Scaling properties of energy spreading in nonlinear Hamiltonian two-dimensional lattices

Article, Preprint English OPEN
Mulansky, Mario ; Pikovsky, Arkady (2012)
  • Publisher: AMER PHYSICAL SOC
  • Journal: PHYSICAL REVIEW E (issn: 1539-3755)
  • Related identifiers: doi: 10.1103/PhysRevE.86.056214
  • Subject: Nonlinear Sciences - Chaotic Dynamics | Condensed Matter - Disordered Systems and Neural Networks

In nonlinear disordered Hamiltonian lattices, where there are no propagating phonons, the spreading of energy is of subdiffusive nature. Recently, the universality class of the subdiffusive spreading according to the nonlinear diffusion equation (NDE) has been suggested... View more
  • References (32)
    32 references, page 1 of 4

    [1] E. Abrahams, editor. 50 Years of Anderson Localization. World Scientific, Singapore, 2010.

    [2] J. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort, and M. Inguscio. PRL, 95(7):070401, 2005.

    [3] T. Schwartz, G. Bartal, S. Fishman, and M. Segev. Nature, 446:52, 2007.

    [4] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg. Phys. Rev. Lett., 100(1):013906, 2008.

    [5] D. Shepelyansky. Phys. Rev. Lett., 70:1787-1790, 1993.

    [6] M. I. Molina. Phys. Rev. B, 58(19):12547-12550, 1998.

    [7] A. S. Pikovsky and D. L. Shepelyansky. Phys. Rev. Lett., 100(9):094101, 2008.

    [8] I. Garcia-Mata and D. L. Shepelyansky. Eur. Phys. J. B, 71(1):121-124, 2009.

    [9] I. Garcia-Mata and D. L. Shepelyansky. Phys. Rev. E, 79:026205, 2009.

    [10] S. Flach, D. O. Krimer, and Ch. Skokos. Phys. Rev. Lett., 102(2):024101, 2009.

  • Metrics
    No metrics available
Share - Bookmark