Analysis of the Precision of Variable Flip Angle T1 Mapping with Emphasis on the Noise Propagated from RF Transmit Field Maps

Article English OPEN
Lee, Yoojin; Callaghan, Martina F.; Nagy, Zoltan;
(2017)
  • Publisher: Frontiers Media S.A.
  • Journal: Frontiers in Neuroscience,volume 11 (issn: 1662-453X, eissn: 1662-453X)
  • Related identifiers: doi: 10.5167/uzh-146619, doi: 10.3389/fnins.2017.00106, pmc: PMC5343565
  • Subject: Department of Economics | error propagation | 330 Economics | B1+, map, T1 map, error propagation, uncertainty, precision, variable flip angle | Neuroscience | B1+ map | B-1(+) map, T-1 map, error propagation, uncertainty, precision, variable flip angle, lattice relaxation-times, high-resolution t-1, radiofrequency field, steady-state, spin-lattice, magnetic-resonance, ernst equation, accuracy, brain, flash | precision | variable flip angle | Original Research | uncertainty | T1 map

In magnetic resonance imaging, precise measurements of longitudinal relaxation time (T1) is crucial to acquire useful information that is applicable to numerous clinical and neuroscience applications. In this work, we investigated the precision of T1 relaxation time as ... View more
  • References (41)
    41 references, page 1 of 5

    Bevington, P. R., and Robinson, D. K. (2003). Data Reduction and Error Analysis for the Physical Sciences. Boston, MA: McGraw-Hill.

    Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., et al. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol. Aging. 35, 1862-1872. doi: 10.1016/j.neurobiolaging.2014. 02.008

    Cheng, H. L., and Wright, G. A. (2006). Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn. Reson. Med. 55, 566-574. doi: 10.1002/mrm.20791

    Christensen, K. A., Grant, D. M., Schulman, E. M., and Walling, C. (1974). Optimal determination of relaxation times of fourier transform nuclear magnetic resonance. Determination of spin-lattice relaxation times in chemically polarized species. J. Phys. Chem. 78, 1971-1977. doi: 10.1021/j100612a022

    Constantinides, C. D., Atalar, E., and McVeigh, E. R. (1997). Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn. Reson. Med. 38, 852-857. doi: 10.1002/mrm.1910380524

    Cunningham, C. H., Pauly, J. M., and Nayak, K. S. (2006). Saturated doubleangle method for rapid B1+ mapping. Magn. Reson. Med. 55, 1326-1333. doi: 10.1002/mrm.20896

    Deoni, S. C. (2007). High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J. Magn. Reson. Imaging 26, 1106-1111. doi: 10.1002/jmri.21130

    Deoni, S. C., Peters, T. M., and Rutt, B. K. (2004). Determination of optimal angles for variable nutation proton magnetic spin-lattice, T1, and spinspin, T2, relaxation times measurement. Magn. Reson. Med. 51, 194-199. doi: 10.1002/mrm.10661

    Deoni, S. C., Peters, T. M., and Rutt, B. K. (2005). High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn. Reson. Med. 53, 237-241. doi: 10.1002/mrm.20314

    Dick, F., Tierney, A. T., Lutti, A., Josephs, O., Sereno, M. I., and Weiskopf, N. (2012). In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J. Neurosci. 32, 16095-16105. doi: 10.1523/JNEUROSCI.1712-12.2012

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    7
    downloads in local repository

    The information is available from the following content providers:

    FromNumber Of ViewsNumber Of Downloads
    UCL Discovery - IRUS-UK 0 7
Share - Bookmark