On Pythagoras Theorem for Products of Spectral Triples

Article, Preprint English OPEN
D'Andrea, Francesco ; Martinetti, Pierre (2013)
  • Publisher: SPRINGER
  • Journal: LETTERS IN MATHEMATICAL PHYSICS (issn: 0377-9017)
  • Related identifiers: doi: 10.1007/s11005-012-0598-x
  • Subject: Mathematical Physics | Mathematics - Operator Algebras | 58B34 (Primary) 46L87 (Secondary)
    arxiv: Mathematics::History and Overview | Quantitative Biology::Genomics

We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non pure states... View more
  • References (26)
    26 references, page 1 of 3

    [1] S. Baaj and P. Julg, Theorie bivariante de Kasparov et operateurs non bornes dans les C - modules hilbertiens, C. R. Acad. S. Paris 296 (1983) 875{878.

    [2] A. H. Chamseddine, A. Connes, and M. Marcolli. Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys., 11:991{1089, 2007.

    [3] A. Connes, Noncommutative di erential geometry, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985), 257{360.

    [4] A. Connes, Compact metric spaces, Fredholm modules, and hyper niteness, Ergodic Theory Dynam. Systems 9 (1989), 207{220.

    [5] A. Connes, Noncommutative Geometry, Academic Press, 1994.

    [6] A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (1995) 6194{6231.

    [7] A. Connes, On the spectral characterization of manifolds, arXiv:0810.2088v1 [math.OA].

    [8] A. Connes, Variations sur le theme spectral, summary of College de France lectures (2007) available at http://www.college-de-france.fr/media/alain-connes/UPL53971_2.pdf; see also http://noncommutativegeometry.blogspot.com/search?q=harmonic+mean.

    [9] F. D'Andrea and G. Landi, Bounded and unbounded Fredholm modules for quantum projective spaces, J. K-theory 6 (2010) 231{240.

    [10] F. D'Andrea and P. Martinetti, A view on Transport Theory from Noncommutative Geometry, SIGMA 6 (2010) 057.

  • Metrics
    No metrics available
Share - Bookmark