Interaction fluide-structure souple et legere, application aux voiliers

Doctoral thesis French OPEN
Durand , Mathieu (2012)
  • Publisher: HAL CCSD
  • Subject: Interaction fluide structure | Volumes fines - éléments finis | spinnaker - oscillating sail | [ SPI.MECA.STRU ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph] | fluide structure interactions | RANSE - Fluide parfait | algorithme implicite | [ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] | RANSE - Potential flow | implicit algorithm | Voile oscilante - spinnaker

This thesis, devoted to simulations of sailboat sail, was initiated by K-Epsilon, acompany specialized in numerical computations for naval hydrodynamics, IRENav, the Frenchnaval academy laboratory and LHEEA from Ecole Centrale Nantes. In this context a finiteelement program was developed dedicated to computing sail membranes and sailboat structures.The program was coupled with an inviscid fluid solver. A more detailed modeling of the flow andinteraction was realized by implementing a coupling with a fluid solver code which solves theReynolds Averaged Navier-Stokes Equations, developed by the DSPM team from LHEEA. Forthe coupling it was necessary to look at the interface over which a transfer of variables betweenthe fluid and structure occurs. Another key consideration was the deformation of the fluid solversmesh. The part has been revisited and extended to reach the development of a fast, robust, andparallelized method to treat the considered deformations. For good solution convergence andstability properties an iterative, partitioned algorithm that relies on an approximation of theinterface’s Jacobian evaluated by the inviscid code and integrated in the structure’s equationswas used. Finally, applications employing these methodologies are presented. Comparisons weremade with an instrumented sailboat. A second experiment of an oscillating cloth was developedto validate the case of interaction of a fluid with a light and flexible structure. Results were usedto validate the RANSE solver coupling. A more realistic calculation was also conducted on anunsteady sailing spinnaker with an automatic trimming algorithm, showing the potential of thepresent coupling.; Cette th`ese CIFRE qui s’int´eresse `a la simulation des voiles de bateaux, a ´et´einiti´ee par la soci´et´e k-Epsilon, entreprise sp´ecialis´ee dans le calcul num´erique en hydrodynamiquenavale, l’IRENav, laboratoire de l’Ecole Navale et le LHEEA de l’Ecole Centrale Nantes.Dans ce contexte, un logiciel d´edi´e au calcul structure a ´et´e d´evelopp´e afin de simuler au moyend’´el´ements finis les membranes des voiles et les structures des voiliers. Ce code a ensuite ´et´ecoupl´e `a un solveur fluide parfait, puis `a un code fluide r´esolvant les ´equations de Navier-Stokesen moyenne de Reynolds d´evelopp´e par l’´equipe DSPM du LHEEA. Pour cela, il a ´et´e n´ecessairede s’int´eresser `a l’interface, o`u s’op`ere le transfert de variables entre le fluide et la structure.Autre point-cl´e, la partie d´eformation de maillage fluide a aussi ´et´e revisit´ee et ´etendue pouraboutir au d´eveloppement d’une m´ethode rapide, robuste et parall`ele permettant de traiter lesd´eformations envisag´ees. Pour obtenir de bonnes propri´et´es de convergence et de stabilit´e, l’algorithmepartitionn´e et it´eratif s’appuie de plus sur une approximation du Jacobien de l’interface´evalu´e par l’approche fluide parfait et int´egr´e au code structure. Enfin, des applications mettanten oeuvre ces m´ethodologies sont pr´esent´ees. Des comparaisons sont effectu´ees avec un voilierinstrument´e. Une seconde exp´erience, la voile oscillante, est mise au point pour valider les casd’interaction fluide-structure souple et l´eg`ere. Les r´esultats ont permis de valider le couplage avecun solveur RANSE. Un calcul plus r´ealiste a aussi ´et´e men´e en instationnaire sur un spinnakerde voilier avec un algorithme de r´eglage.
  • References (88)
    88 references, page 1 of 9

    [1] Allen, C. B. An unsteady flow-solver with algebraic grid motion for aeroelastic simulations. In ICAS (2002).

    [2] Allen, C. B. Flow-solver and mesh motion scheme for forward flight rotor simulation. In 24th Applied Aerodynamics Conference, San Francisco California (2006).

    [4] Augier, B., Bot, P., Hauville, F., and Durand, M. Experimental validation of unsteady models for fluid structure interaction : Application to yacht sails and rigs. Journal of Wind Engineering and industrial Aerodynamics 101 (2012), 53-66.

    [5] Ayyad, Y., and Barboteu, M. Comparaison de sch´emas num´eriques de type conservation d'´energie pour la r´esolution des probl`emes d'impacts non lin´eaires. Tech. rep., Universit´e de Perpignan.

    [6] Barker, A. T., and Cai, X.-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood modeling. Journal of Computational Physics 229 (2010), 642-659.

    [7] Basseville, S., and Feyel, F. M´ethode de r´esolution en ´el´ements finis. Cours Ecole Nationale Sup´erieur des Mines de Paris (2005).

    [8] Bathe, K. Finite element method. Wiley Online Library, 2007.

    [9] Bles, G., Nowacki, W., and Tourabi, A. Experimental study of the cyclic viscoelasto-platic behaviour of a polyamide fibre strap. International Journal of Solids and Structures 46 (2009), 2693-2705.

    [10] Blevins, R. Formulas for Natural Frequency and Mode Shapes. Kreifer Pub Co, 1995.

    [11] Bouzidi, R., Ravaut, Y., and Wielgosz, C. A finite-strain energy based solution for an axi-symmetrical inflated membranes. Computers & Structures (2003), 2479-2490.

  • Metrics
    No metrics available
Share - Bookmark