Big bang darkleosynthesis

Article, Preprint English OPEN
Krnjaic, Gordan ; Sigurdson, Kris (2015)
  • Publisher: Elsevier BV
  • Journal: Physics Letters B, volume 751, pages 464-468 (issn: 0370-2693, eissn: 1873-2445)
  • Related identifiers: doi: 10.1016/j.physletb.2015.11.001
  • Subject: High Energy Physics - Phenomenology | Physics | QC1-999 | Astrophysics - Cosmology and Nongalactic Astrophysics | Nuclear and High Energy Physics

In a popular class of models, dark matter comprises an asymmetric population of composite particles with short range interactions arising from a confined nonabelian gauge group. We show that coupling this sector to a well-motivated light mediator particle yields efficient darkleosynthesis , a dark-sector version of big-bang nucleosynthesis (BBN), in generic regions of parameter space. Dark matter self-interaction bounds typically require the confinement scale to be above ΛQCD , which generically yields large ( ≫MeV/dark-nucleon ) binding energies. These bounds further suggest the mediator is relatively weakly coupled, so repulsive forces between dark-sector nuclei are much weaker than Coulomb repulsion between standard-model nuclei, which results in an exponential barrier-tunneling enhancement over standard BBN. Thus, darklei are easier to make and harder to break than visible species with comparable mass numbers. This process can efficiently yield a dominant population of states with masses significantly greater than the confinement scale and, in contrast to dark matter that is a fundamental particle, may allow the dominant form of dark matter to have high spin ( S≫3/2 ), whose discovery would be smoking gun evidence for dark nuclei.
  • References (40)
    40 references, page 1 of 4

    [1] J. Beringer, et al., Particle Data Group, Phys. Rev. D 86 (2012) 010001.

    [2] D.S. Alves, S.R. Behbahani, P. Schuster, J.G. Wacker, Phys. Lett. B 692 (2010) 323, arXiv:0903.3945.

    [3] D. Spier Moreira Alves, S.R. Behbahani, P. Schuster, J.G. Wacker, J. High Energy Phys. 1006 (2010) 113, arXiv:1003.4729.

    [4] M.R. Buckley, E.T. Neil, Phys. Rev. D 87 (2013) 043510, arXiv:1209.6054.

    [5] H.M. Lee, M. Park, V. Sanz, arXiv:1306.4107, 2013.

    [6] G.D. Kribs, T.S. Roy, J. Terning, K.M. Zurek, Phys. Rev. D 81 (2010) 095001, arXiv:0909.2034.

    [7] M.Y. Khlopov, A.G. Mayorov, E.Y. Soldatov, Int. J. Mod. Phys. D 19 (2010) 1385, arXiv:1003.1144.

    [8] J.L. Feng, J. Kumar, Phys. Rev. Lett. 101 (2008) 231301, arXiv:0803.4196.

    [9] E. Izaguirre, G. Krnjaic, P. Schuster, N. Toro, arXiv:1307.6554, 2013.

    [10] M. Kaplinghat, S. Tulin, H.-B. Yu, arXiv:1308.0618, 2013.

  • Metrics
    No metrics available
Share - Bookmark