publication . Preprint . 2020

Observation of Excess Electronic Recoil Events in XENON1T

Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Angevaare, J.R.; Arneodo, F.; ...
Open Access English
  • Published: 08 Jul 2020
  • Country: France
We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector, with an exposure of 0.65 t-y and an unprecedentedly low background rate of $76 \pm 2_{stat}$ events/(t y keV) between 1-30 keV. An excess over known backgrounds is observed below 7 keV, rising towards lower energies and prominent between 2-3 keV. The solar axion model has a 3.5$\sigma$ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae} < 3.7 \times 10^{-12}$, $g_{ae}g_{an}^{eff} < 4.6 \times 10^{-18}$, and...
free text keywords: High Energy Physics - Experiment, Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Phenomenology, experimental results, Gran Sasso, XENON, dark matter: detector, xenon: target, xenon: liquid, tension, dark matter: vector, pseudoscalar, electron: recoil, surface, boson: vector, new physics: search for, model: axion, dimension: 3, tritium: semileptonic decay, background: low, coupling: (axion 2photon), coupling: (axion 2nucleon), coupling: (axion 2electron), axion: coupling, neutrino: solar, boson: dark matter, neutrino: magnetic moment, axion: solar, dark matter: direct detection, [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Funded by
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
155 references, page 1 of 11

[1] G. Bertone, D. Hooper, and J. Silk, Physics Reports 405, 279 (2005).

[2] E. Aprile et al. (XENON Collaboration), The European Physical Journal C 77, 881 (2017).

[3] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 121, 111302 (2018).

[4] E. Aprile et al. (XENON Collaboration), arXiv:2003.03825 [physics.ins-det].

[5] E. Aprile, K. L. Giboni, P. Majewski, K. Ni, and M. Yamashita, Phys. Rev. B 76, 014115 (2007).

[6] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

[7] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

[8] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[9] J. Preskill, M. B. Wise, and F. Wilczek, Physics Letters B 120, 127 (1983).

[10] L. Abbott and P. Sikivie, Physics Letters B 120, 133 (1983).

[11] M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).

[12] D. Cadamuro and J. Redondo, Journal of Cosmology and Astroparticle Physics 2012, 032032 (2012).

[13] G. G. Ra elt, Astrophysical Axion Bounds (Springer Berlin Heidelberg) p. 5171.

[14] J. Redondo, Journal of Cosmology and Astroparticle Physics 2013, 008 (2013).

[15] S. Moriyama, Phys. Rev. Lett. 75, 3222 (1995).

155 references, page 1 of 11
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue