Share - Bookmark
-
- Download from
-
-
-
- Funded by
-
[1] A. Arnold, A syntactic congruence for rational ω-languages, Theoret. Comput. Sci. 39 (1985), no. 2-3, 333-335. 2
[2] A. Ayyer, J. Bouttier, S. Corteel, and F. Nunzi, Multivariate juggling probabilities, Electron. J. Probab. 20 (2015), no. 5, 1-29. 1
[3] A. Ayyer, S. Klee, and A. Schilling, Combinatorial Markov chains on linear extensions, J. Algebraic Combinatorics 39(4) (2014) 853-881. 10
[4] A. Ayyer, A. Schilling, B. Steinberg, and N. M. Thi´ery, Markov chains, R-trivial monoids and representation theory, Internat. J. of Algebra Comput. 25 (2015) 69-231. 10
[5] A. Ayyer and V. Strehl, Stationary distribution and eigenvalues for a de Bruijn process, In Ilias S. Kotsireas and Eugene V. Zima, editors, Advances in Combinatorics, pages 101-120. Springer Berlin Heidelberg, 2013. 1, 2
[6] J. Berstel, D. Perrin and C. Reutenauer, Codes and automata, Encyclopedia of Mathematics and its Applications 129, Cambridge University Press, Cambridge, 2010. 4, 5, 16, 17, 30, 31
[7] K. S. Brown, Semigroups, rings, and Markov chains, J. Theoret. Probab. 13(3) (2000) 871-938. 10
[8] K. S. Brown and P. Diaconis, Random walks and hyperplane arrangements, Ann. Probab. 26(4) (1998) 1813-1854. 10
[9] N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946) 758-764. 1
[10] I. J. Good, Normal recurring decimals, J. London Math. Soc. 21 (1946) 167-169. 1