Random walks on semaphore codes and delay de Bruijn semigroups

Article, Preprint Portuguese OPEN
Pedro V. Silva ; John Rhodes ; Anne Schilling (2016)
  • Publisher: eScholarship, University of California
  • Related identifiers: doi: 10.1142/S0218196716500284
  • Subject: 20M07, 20M30, 60J10, 05E18 | resets | hitting time | Mathematics - Group Theory | math.CO | math.GR | random walk | de Bruijn semigroup | semaphore codes | Mathematics - Combinatorics | right congruences | math.PR | Mathematics - Probability | Physical Sciences and Mathematics

We develop a new approach to random walks on de Bruijn graphs over the alphabet $A$ through right congruences on $A^k$, defined using the natural right action of $A^+$. A major role is played by special right congruences, which correspond to semaphore codes and allow an easier computation of the hitting time. We show how right congruences can be approximated by special right congruences.
  • References (16)
    16 references, page 1 of 2

    [1] A. Arnold, A syntactic congruence for rational ω-languages, Theoret. Comput. Sci. 39 (1985), no. 2-3, 333-335. 2

    [2] A. Ayyer, J. Bouttier, S. Corteel, and F. Nunzi, Multivariate juggling probabilities, Electron. J. Probab. 20 (2015), no. 5, 1-29. 1

    [3] A. Ayyer, S. Klee, and A. Schilling, Combinatorial Markov chains on linear extensions, J. Algebraic Combinatorics 39(4) (2014) 853-881. 10

    [4] A. Ayyer, A. Schilling, B. Steinberg, and N. M. Thi´ery, Markov chains, R-trivial monoids and representation theory, Internat. J. of Algebra Comput. 25 (2015) 69-231. 10

    [5] A. Ayyer and V. Strehl, Stationary distribution and eigenvalues for a de Bruijn process, In Ilias S. Kotsireas and Eugene V. Zima, editors, Advances in Combinatorics, pages 101-120. Springer Berlin Heidelberg, 2013. 1, 2

    [6] J. Berstel, D. Perrin and C. Reutenauer, Codes and automata, Encyclopedia of Mathematics and its Applications 129, Cambridge University Press, Cambridge, 2010. 4, 5, 16, 17, 30, 31

    [7] K. S. Brown, Semigroups, rings, and Markov chains, J. Theoret. Probab. 13(3) (2000) 871-938. 10

    [8] K. S. Brown and P. Diaconis, Random walks and hyperplane arrangements, Ann. Probab. 26(4) (1998) 1813-1854. 10

    [9] N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946) 758-764. 1

    [10] I. J. Good, Normal recurring decimals, J. London Math. Soc. 21 (1946) 167-169. 1

  • Similar Research Results (1)
  • Metrics
    No metrics available