Task-Driven Dictionary Learning

Article, Preprint English OPEN
Mairal, Julien; Bach, Francis; Ponce, Jean;
(2012)
  • Publisher: Institute of Electrical and Electronics Engineers
  • Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence (issn: 0162-8828)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1109/TPAMI.2011.156
  • Subject: matrix factorization | ACM : I.: Computing Methodologies/I.5: PATTERN RECOGNITION | Statistics - Machine Learning | compressed sensing | Lasso | [ STAT.ML ] Statistics [stat]/Machine Learning [stat.ML] | dictionary learning | semi-supervised learning | Basis pursuit | sparse principal component analysis | sparse coding

final draft post-refereeing; International audience; Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience and signal processing. For signals such as natural images... View more
  • References (50)
    50 references, page 1 of 5

    [8] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

    [9] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21, pages 1033-1040. MIT Press, 2009.

    [10] D. M. Bradley and J. A. Bagnell. Differentiable sparse coding. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21, pages 113-120. 2009.

    [11] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

    [12] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

    [13] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:33-61, 1999.

    [14] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37:3311-3325, 1997.

    [15] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):210- 227, 2009.

    [16] M. Duarte-Carvajalino and G. Sapiro. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 18(7):1395-1408, 2009.

    [17] K. Engan, S. O. Aase, and J. H. Husoy. Frame based signal compression using method of optimal directions (MOD). In Proceedings of the 1999 IEEE International Symposium on Circuits Systems, volume 4, 1999.

  • Related Organizations (5)
  • Metrics