Coupling internal cerebellar models enhances online adaptation and supports offline consolidation in sensorimotor tasks

Article English OPEN
Jean-Baptiste ePassot; Niceto Rafael Luque; Angelo eArleo;
(2013)
  • Publisher: Frontiers
  • Journal: Frontiers in Computational Neuroscience, volume 7 (issn: 1662-5188, eissn: 1662-5188)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.3389/fncom.2013.00095/full, doi: 10.3389/fncom.2013.00095, pmc: PMC3711060
  • Subject: inverse and forward internal models | procedural adaptation task | Neurosciences. Biological psychiatry. Neuropsychiatry | cerebellar microcomplex | RC321-571 | Neuroscience | [ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] | Original Research Article | [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] | sensorimotor adaptation | motor control

International audience; The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts t... View more
  • References (99)
    99 references, page 1 of 10

    Albus, J. S. (1971). A theory of cerebellar function. Math Biosci. 10, 25-61. doi: 10.1016/0025-5564(71) 90051-4

    Assisi, C., Stopfer, M., Laurent, G., and Bazhenov, M. (2007). Adaptive regulation of sparseness by feedforward inhibition. Nat. Neurosci. 10, 1176-1184. doi: 10.1038/nn1947

    Bell, C., Bodznick, D., Montgomery, J., and Bastian, J. (1997). The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav. Evol. 50, 17-31. doi: 10.1159/000113352

    Brunel, N., Hakim, V., Isope, P., Nadal, J.-P., and Barbour, B. (2004). Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43, 745-757. doi: 10.1016/j.neuron.2004.08.023

    Carrillo, R. R., Ros, E., Boucheny, C., and Coenen, O. J. D. (2008). A real-time spiking cerebellum model for learning robot control. Biosystems 94, 18-27. doi: 10.1016/j.biosystems.2008.05.008

    Chadderton, P., Margrie, T. W., and Häusser, M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856-860. doi: 10.1038/nature02442

    Contreras-Vidal, J. L., Grossberg, S., and Bullock, D. (1997). A neural model of cerebellar learning for arm movement control: cortico-spinocerebellar dynamics. Learn Memory 3, 475-502. doi: 10.1101/lm.3.6.475

    D'Angelo, E., and De Zeeuw, C. I. (2009). Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 32, 30-40. doi: 10.1016/j.tins.2008. 09.007

    Dean, P., Porrill, J., Ekerot, C.-F., and Jörntell, H. (2010). The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11, 30-43. doi: 10.1038/nrn2756

    Desmond, J. E., and Moore, J. W. (1988). Adaptive timing in neural networks: the conditioned response. Biol. Cybern. 58, 405-415. doi: 10.1007/BF00361347

  • Related Research Results (1)
  • Similar Research Results (2)
  • Metrics
Share - Bookmark