publication . Article . Other literature type . Conference object . 2019

Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato.

Enrico Schleiff; Asmaa El-shershaby; Stephan Summerer; Sotirios Fragkostefanakis; Rina Iannacone; Filomena Carriero; Angelo Petrozza; Dominik Marko;
Open Access English
  • Published: 07 Jul 2019 Journal: Genes, volume 10, issue 7 (eissn: 2073-4425, Copyright policy)
  • Publisher: MDPI
Abstract
The identification of heat stress (HS)-resilient germplasm is important to ensure food security under less favorable environmental conditions. For that, germplasm with an altered activity of factors regulating the HS response is an important genetic tool for crop improvement. Heat shock binding protein (HSBP) is one of the main negative regulators of HS response, acting as a repressor of the activity of HS transcription factors. We identified a TILLING allele of <i>Solanum lycopersicum</i> (tomato) <i>HSBP1</i>. We examined the effects of the mutation on the functionality of the protein in tomato protoplasts, and compared the thermotolerance capacity of lines ca...
Subjects
Medical Subject Headings: food and beveragesfungi
free text keywords: Article, Solanum lycopersicum, heat stress, thermotolerance, heat shock protein, heat stress transcription factor, phenotyping, HSBP, <i>Solanum lycopersicum</i>, Genetics, QH426-470, Genetics(clinical), Mutant, Mutation, medicine.disease_cause, medicine, Allele, Repressor, Binding protein, Solanum, biology.organism_classification, biology, TILLING
Funded by
EC| EPPN2020
Project
EPPN2020
European Plant Phenotyping Network 2020
  • Funder: European Commission (EC)
  • Project Code: 731013
  • Funding stream: H2020 | RIA
,
EC| SPOT-ITN
Project
SPOT-ITN
Pollen thermotolerance and crop fertility
  • Funder: European Commission (EC)
  • Project Code: 289220
  • Funding stream: FP7 | SP3 | PEOPLE
Download fromView all 6 versions
Genes
Other literature type . 2019
Genes
Article . 2019
Genes
Article . 2019
Provider: Crossref
62 references, page 1 of 5

Bokszczanin, K.L., Fragkostefanakis, S.. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant Sci.. 2013; 4: 315 [OpenAIRE] [PubMed] [DOI]

Wahid, A., Gelani, S., Ashraf, M., Foolad, M.. Heat tolerance in plants: An overview. Environ. Exp. Bot.. 2007; 61: 199-223 [OpenAIRE] [DOI]

Mittler, R., Finka, A., Goloubinoff, P.. How do plants feel the heat?. Trends Biochem. Sci.. 2012; 37: 118-125 [OpenAIRE] [PubMed] [DOI]

Rieu, I., Twell, D., Firon, N.. Pollen Development at High Temperature: From Acclimation to Collapse. Plant Physiol.. 2017; 173: 1967-1976 [OpenAIRE] [PubMed] [DOI]

Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., De Groot, P.F.M., Jansma, S.Y., Mariani, C., Park, S., Rieu, I.. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE. 2016; 11 [OpenAIRE] [PubMed] [DOI]

Firon, N., Shaked, R., Peet, M.M., Pharr, D.M., Zamski, E., Rosenfeld, K., Althan, L., Pressman, E.. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic.. 2006; 109: 212-217 [OpenAIRE] [DOI]

Sato, S., Peet, M.M., Thomas, J.F.. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ.. 2000; 23: 719-726 [OpenAIRE] [DOI]

Hartl, F.U., Bracher, A., Hayer-Hartl, M.. Molecular chaperones in protein folding and proteostasis. Nature. 2011; 475: 324-332 [OpenAIRE] [PubMed] [DOI]

Fragkostefanakis, S., Simm, S., Paul, P., Bublak, D., Scharf, K.D., Schleiff, E.. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ.. 2015; 38: 693-709 [OpenAIRE] [PubMed] [DOI]

Keller, M., Consortium, S., Simm, S.. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom.. 2018; 19 [OpenAIRE] [DOI]

Liu, H.-C., Charng, Y.-Y.. Common and Distinct Functions of Arabidopsis Class A1 and A2 Heat Shock Factors in Diverse Abiotic Stress Responses and Development. Plant Physiol.. 2013; 163: 276-290 [OpenAIRE] [PubMed] [DOI]

Iwata, Y., Sakiyama, M., Lee, M.H., Koizumi, N.. Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress. Plant Biotechnol.. 2010; 27: 161-171 [OpenAIRE] [DOI]

Jiang, J., Liu, X., Liu, C., Liu, G., Li, S., Wang, L.. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature. Plant Physiol.. 2017; 173: 1502-1518 [OpenAIRE] [PubMed] [DOI]

Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., Shen, S., Firon, N.. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot.. 2009; 60: 3891-3908 [OpenAIRE] [PubMed] [DOI]

Queitsch, C., Hong, S.W., Vierling, E., Lindquist, S.. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000; 12: 479-492 [OpenAIRE] [PubMed] [DOI]

62 references, page 1 of 5
Abstract
The identification of heat stress (HS)-resilient germplasm is important to ensure food security under less favorable environmental conditions. For that, germplasm with an altered activity of factors regulating the HS response is an important genetic tool for crop improvement. Heat shock binding protein (HSBP) is one of the main negative regulators of HS response, acting as a repressor of the activity of HS transcription factors. We identified a TILLING allele of <i>Solanum lycopersicum</i> (tomato) <i>HSBP1</i>. We examined the effects of the mutation on the functionality of the protein in tomato protoplasts, and compared the thermotolerance capacity of lines ca...
Subjects
Medical Subject Headings: food and beveragesfungi
free text keywords: Article, Solanum lycopersicum, heat stress, thermotolerance, heat shock protein, heat stress transcription factor, phenotyping, HSBP, <i>Solanum lycopersicum</i>, Genetics, QH426-470, Genetics(clinical), Mutant, Mutation, medicine.disease_cause, medicine, Allele, Repressor, Binding protein, Solanum, biology.organism_classification, biology, TILLING
Funded by
EC| EPPN2020
Project
EPPN2020
European Plant Phenotyping Network 2020
  • Funder: European Commission (EC)
  • Project Code: 731013
  • Funding stream: H2020 | RIA
,
EC| SPOT-ITN
Project
SPOT-ITN
Pollen thermotolerance and crop fertility
  • Funder: European Commission (EC)
  • Project Code: 289220
  • Funding stream: FP7 | SP3 | PEOPLE
Download fromView all 6 versions
Genes
Other literature type . 2019
Genes
Article . 2019
Genes
Article . 2019
Provider: Crossref
62 references, page 1 of 5

Bokszczanin, K.L., Fragkostefanakis, S.. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant Sci.. 2013; 4: 315 [OpenAIRE] [PubMed] [DOI]

Wahid, A., Gelani, S., Ashraf, M., Foolad, M.. Heat tolerance in plants: An overview. Environ. Exp. Bot.. 2007; 61: 199-223 [OpenAIRE] [DOI]

Mittler, R., Finka, A., Goloubinoff, P.. How do plants feel the heat?. Trends Biochem. Sci.. 2012; 37: 118-125 [OpenAIRE] [PubMed] [DOI]

Rieu, I., Twell, D., Firon, N.. Pollen Development at High Temperature: From Acclimation to Collapse. Plant Physiol.. 2017; 173: 1967-1976 [OpenAIRE] [PubMed] [DOI]

Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., De Groot, P.F.M., Jansma, S.Y., Mariani, C., Park, S., Rieu, I.. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE. 2016; 11 [OpenAIRE] [PubMed] [DOI]

Firon, N., Shaked, R., Peet, M.M., Pharr, D.M., Zamski, E., Rosenfeld, K., Althan, L., Pressman, E.. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic.. 2006; 109: 212-217 [OpenAIRE] [DOI]

Sato, S., Peet, M.M., Thomas, J.F.. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ.. 2000; 23: 719-726 [OpenAIRE] [DOI]

Hartl, F.U., Bracher, A., Hayer-Hartl, M.. Molecular chaperones in protein folding and proteostasis. Nature. 2011; 475: 324-332 [OpenAIRE] [PubMed] [DOI]

Fragkostefanakis, S., Simm, S., Paul, P., Bublak, D., Scharf, K.D., Schleiff, E.. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ.. 2015; 38: 693-709 [OpenAIRE] [PubMed] [DOI]

Keller, M., Consortium, S., Simm, S.. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom.. 2018; 19 [OpenAIRE] [DOI]

Liu, H.-C., Charng, Y.-Y.. Common and Distinct Functions of Arabidopsis Class A1 and A2 Heat Shock Factors in Diverse Abiotic Stress Responses and Development. Plant Physiol.. 2013; 163: 276-290 [OpenAIRE] [PubMed] [DOI]

Iwata, Y., Sakiyama, M., Lee, M.H., Koizumi, N.. Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress. Plant Biotechnol.. 2010; 27: 161-171 [OpenAIRE] [DOI]

Jiang, J., Liu, X., Liu, C., Liu, G., Li, S., Wang, L.. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature. Plant Physiol.. 2017; 173: 1502-1518 [OpenAIRE] [PubMed] [DOI]

Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., Shen, S., Firon, N.. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot.. 2009; 60: 3891-3908 [OpenAIRE] [PubMed] [DOI]

Queitsch, C., Hong, S.W., Vierling, E., Lindquist, S.. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000; 12: 479-492 [OpenAIRE] [PubMed] [DOI]

62 references, page 1 of 5
Any information missing or wrong?Report an Issue