Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato.
- Published: 07 Jul 2019 Journal: Genes, volume 10, issue 7 (eissn: 2073-4425,
Copyright policy)
- Publisher: MDPI
- Funder: European Commission (EC)
- Project Code: 731013
- Funding stream: H2020 | RIA
- Funder: European Commission (EC)
- Project Code: 289220
- Funding stream: FP7 | SP3 | PEOPLE
Bokszczanin, K.L., Fragkostefanakis, S.. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant Sci.. 2013; 4: 315 [OpenAIRE] [PubMed] [DOI]
Wahid, A., Gelani, S., Ashraf, M., Foolad, M.. Heat tolerance in plants: An overview. Environ. Exp. Bot.. 2007; 61: 199-223 [OpenAIRE] [DOI]
Mittler, R., Finka, A., Goloubinoff, P.. How do plants feel the heat?. Trends Biochem. Sci.. 2012; 37: 118-125 [OpenAIRE] [PubMed] [DOI]
Rieu, I., Twell, D., Firon, N.. Pollen Development at High Temperature: From Acclimation to Collapse. Plant Physiol.. 2017; 173: 1967-1976 [OpenAIRE] [PubMed] [DOI]
Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., De Groot, P.F.M., Jansma, S.Y., Mariani, C., Park, S., Rieu, I.. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE. 2016; 11 [OpenAIRE] [PubMed] [DOI]
Firon, N., Shaked, R., Peet, M.M., Pharr, D.M., Zamski, E., Rosenfeld, K., Althan, L., Pressman, E.. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic.. 2006; 109: 212-217 [OpenAIRE] [DOI]
Sato, S., Peet, M.M., Thomas, J.F.. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ.. 2000; 23: 719-726 [OpenAIRE] [DOI]
Hartl, F.U., Bracher, A., Hayer-Hartl, M.. Molecular chaperones in protein folding and proteostasis. Nature. 2011; 475: 324-332 [OpenAIRE] [PubMed] [DOI]
Fragkostefanakis, S., Simm, S., Paul, P., Bublak, D., Scharf, K.D., Schleiff, E.. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ.. 2015; 38: 693-709 [OpenAIRE] [PubMed] [DOI]
Keller, M., Consortium, S., Simm, S.. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom.. 2018; 19 [OpenAIRE] [DOI]
Liu, H.-C., Charng, Y.-Y.. Common and Distinct Functions of Arabidopsis Class A1 and A2 Heat Shock Factors in Diverse Abiotic Stress Responses and Development. Plant Physiol.. 2013; 163: 276-290 [OpenAIRE] [PubMed] [DOI]
Iwata, Y., Sakiyama, M., Lee, M.H., Koizumi, N.. Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress. Plant Biotechnol.. 2010; 27: 161-171 [OpenAIRE] [DOI]
Jiang, J., Liu, X., Liu, C., Liu, G., Li, S., Wang, L.. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature. Plant Physiol.. 2017; 173: 1502-1518 [OpenAIRE] [PubMed] [DOI]
Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., Shen, S., Firon, N.. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot.. 2009; 60: 3891-3908 [OpenAIRE] [PubMed] [DOI]
Queitsch, C., Hong, S.W., Vierling, E., Lindquist, S.. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000; 12: 479-492 [OpenAIRE] [PubMed] [DOI]
- Funder: European Commission (EC)
- Project Code: 731013
- Funding stream: H2020 | RIA
- Funder: European Commission (EC)
- Project Code: 289220
- Funding stream: FP7 | SP3 | PEOPLE
Bokszczanin, K.L., Fragkostefanakis, S.. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant Sci.. 2013; 4: 315 [OpenAIRE] [PubMed] [DOI]
Wahid, A., Gelani, S., Ashraf, M., Foolad, M.. Heat tolerance in plants: An overview. Environ. Exp. Bot.. 2007; 61: 199-223 [OpenAIRE] [DOI]
Mittler, R., Finka, A., Goloubinoff, P.. How do plants feel the heat?. Trends Biochem. Sci.. 2012; 37: 118-125 [OpenAIRE] [PubMed] [DOI]
Rieu, I., Twell, D., Firon, N.. Pollen Development at High Temperature: From Acclimation to Collapse. Plant Physiol.. 2017; 173: 1967-1976 [OpenAIRE] [PubMed] [DOI]
Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., De Groot, P.F.M., Jansma, S.Y., Mariani, C., Park, S., Rieu, I.. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE. 2016; 11 [OpenAIRE] [PubMed] [DOI]
Firon, N., Shaked, R., Peet, M.M., Pharr, D.M., Zamski, E., Rosenfeld, K., Althan, L., Pressman, E.. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic.. 2006; 109: 212-217 [OpenAIRE] [DOI]
Sato, S., Peet, M.M., Thomas, J.F.. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ.. 2000; 23: 719-726 [OpenAIRE] [DOI]
Hartl, F.U., Bracher, A., Hayer-Hartl, M.. Molecular chaperones in protein folding and proteostasis. Nature. 2011; 475: 324-332 [OpenAIRE] [PubMed] [DOI]
Fragkostefanakis, S., Simm, S., Paul, P., Bublak, D., Scharf, K.D., Schleiff, E.. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ.. 2015; 38: 693-709 [OpenAIRE] [PubMed] [DOI]
Keller, M., Consortium, S., Simm, S.. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom.. 2018; 19 [OpenAIRE] [DOI]
Liu, H.-C., Charng, Y.-Y.. Common and Distinct Functions of Arabidopsis Class A1 and A2 Heat Shock Factors in Diverse Abiotic Stress Responses and Development. Plant Physiol.. 2013; 163: 276-290 [OpenAIRE] [PubMed] [DOI]
Iwata, Y., Sakiyama, M., Lee, M.H., Koizumi, N.. Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress. Plant Biotechnol.. 2010; 27: 161-171 [OpenAIRE] [DOI]
Jiang, J., Liu, X., Liu, C., Liu, G., Li, S., Wang, L.. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature. Plant Physiol.. 2017; 173: 1502-1518 [OpenAIRE] [PubMed] [DOI]
Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., Shen, S., Firon, N.. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot.. 2009; 60: 3891-3908 [OpenAIRE] [PubMed] [DOI]
Queitsch, C., Hong, S.W., Vierling, E., Lindquist, S.. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000; 12: 479-492 [OpenAIRE] [PubMed] [DOI]