publication . Conference object . Article . Preprint . 2014

Universality of TMD correlators

M. G. A. Buffing; Asmita Mukherjee; Piet J. Mulders;
Open Access English
  • Published: 25 Sep 2014
Abstract
In a high-energy scattering process with hadrons in the initial state, color is involved. Transverse momentum dependent distribution functions (TMDs) describe the quark and gluon distributions in these hadrons in momentum space with the inclusion of transverse directions. Apart from the (anti)-quarks and gluons that are involved in the hard scattering process, additional gluon emissions by the hadrons have to be taken into account as well, giving rise to Wilson lines or gauge links. The TMDs involved are sensitive to the process under consideration and hence potentially nonuniversal due to these Wilson line interactions with the hard process; different hard proc...
Subjects
arXiv: High Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentNuclear TheoryNuclear Experiment
free text keywords: Physics, QC1-999, High Energy Physics - Phenomenology, Quark, Particle physics, Position and momentum space, Universality (philosophy), Gluon, Wilson loop, Linear combination, Correlation function, Hadron
Funded by
EC| QWORK
Project
QWORK
Quantum Chromodynamics at Work
  • Funder: European Commission (EC)
  • Project Code: 320389
  • Funding stream: FP7 | SP2 | ERC
,
EC| HADRONPHYSICS3
Project
HADRONPHYSICS3
Study of Strongly Interacting Matter
  • Funder: European Commission (EC)
  • Project Code: 283286
  • Funding stream: FP7 | SP4 | INFRA

[1] J.P. Ralston and D.E. Soper, Nucl. Phys. B 152, 109 (1979); R.D. Tangerman and P.J. Mulders, Phys. Rev. D 51, 3357-3372 (1995); D. Boer, Phys. Rev. D 60, 014012 (1999).

[2] M.G.A. Buffing, A. Mukherjee and P.J. Mulders, Phys. Rev. D 86, 074030 (2012).

[3] M.G.A. Buffing, A. Mukherjee and P.J. Mulders, Phys. Rev. D 88, 054027 (2013).

[4] C.J. Bomhof, P.J. Mulders and F. Pijlman, Eur. Phys. J. C 47, 147-162 (2006).

[5] D.W. Sivers, Phys. Rev. D 41, 83 (1990); D.W. Sivers, Phys. Rev. D 43, 261-263 (1991); J.C. Collins, Nucl. Phys. B 396, 161-182 (1993); J.C. Collins, Phys. Lett. B 536, 43-48 (2002); S.J. Brodsky, D.S. Hwang and I. Schmidt, Nucl. Phys. B 642, 344-356 (2002).

[6] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders and M. Schlegel, JHEP 0702, 093 (2007).

[7] D. Boer, P.J. Mulders and F. Pijlman, Nucl. Phys. B 667 201-241 (2003); A. Bacchetta, C.J. Bomhof, P.J. Mulders and F. Pijlman, Phys. Rev. D 72, 034030 (2005); C.J. Bomhof and P.J. Mulders, JHEP 0702, 029 (2007).

[8] A.V. Efremov and O.V. Teryaev, Sov. J. Nucl. Phys. 36, 140 (1982); A.V. Efremov and O.V. Teryaev, Phys. Lett. B 150, 383 (1985); J-W. Qiu and G.F. Sterman, Phys. Rev. Lett. 67, 2264-2267 (1991); JW. Qiu and G.F. Sterman, Nucl. Phys. B 378, 52- 78 (1992); J-W. Qiu and G.F. Sterman, Phys. Rev. D 59, 014004 (1998); Y. Kanazawa and Y. Koike, Phys. Lett. B 478, 121-126 (2000).

[9] M.G.A. Buffing and P.J. Mulders, JHEP 1107, 065 (2011).

[10] M.G.A. Buffing and P.J. Mulders, Int. J. Mod. Phys. Conf. Ser. 20, 66 (2012).

[11] A. Metz, Phys. Lett. B 549, 139-145 (2002); J.C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001 (2004); L.P. Gamberg, A. Mukherjee and P.J. Mulders, Phys. Rev. D 77, 114026 (2008); S. Meissner and A. Metz, Phys. Rev. Lett. 102, 172003 (2009); L.P. Gamberg, A. Mukherjee and P.J. Mulders, Phys. Rev. D 83, 071503 (2011).

[12] P.J. Mulders and J. Rodrigues, Phys. Rev. D 63, 094021 (2001).

[13] C.J. Bomhof and P.J. Mulders, Nucl. Phys. B 795, 409-427 (2008).

[14] S. Meissner, A. Metz and K. Goeke, Phys. Rev. D 76, 034002 (2007).

[15] M.G.A. Buffing, P.J. Mulders and A. Mukherjee, Int. J. Mod. Phys. Conf. Ser. 25, 1460003 (2014).

Any information missing or wrong?Report an Issue