Leveraging Entrepreneurship through the design of Artificial Intelligence Projects

Conference object English OPEN
Osegi , E.N; Wokoma , B.A; Bruce-Allison , S.A;
  • Publisher: HAL CCSD
  • Subject: business | entrepreneurs | AIP | [ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI] | technology

Conference Proceeding: Port-Harcourt School of Engineering Science and Technology, Port-Harcourt, Rivers State, Nigeria, 2017; International audience; Artificial Intelligence projects (AIP), is currently attracting popular attention as a viable business area for young a... View more
  • References (12)
    12 references, page 1 of 2

    1. Sumathi, S., & Paneerselvam, S. (2010). Computational intelligence paradigms: theory & applications using MATLAB. CRC Press.

    2. Zelka, E. (1998). From Devices to" Ambient Intelligence". In Digital Living Room Conferences, June 1998.

    3. Designing AI based image recognition research projects. Technical Report: TEKSAV & ASSOCIATES. Unpublished.

    4. Osegi, N. E., & Enyindah, P. (2015). Learning Representations from Deep Networks Using Mode Synthesizers. arXiv preprint arXiv:1506.07545.

    5. Osegi, E. N. (2015). A Generative Model for Multi-Dialect Representation. arXiv preprint arXiv:1508.04035.

    6. Deviant Learning Algorithm. https://www.mathworks.com/matlabcentral/fileexchange/59051-deviant-learningalgorithm.

    7. EN Osegi, V.I.E Anireh. HTM-MAT: Minimalist Cortical Learning Algorithm. https://www.mathworks.com/matlabcentral/fileexchange/51968-htm-matminimalist-htm-cortical-learning-algorithm.

    8. Osegi, E. N., & Anireh, V. I. (2016). Monitoring Premium Motor Spirit Demand Nigeria: A Novel Artificial Intelligence Approach. Nigerian Journal of Oil and Gas Technology, 1(2). Pp52-57.

    9. Osegi, E. N. (2016). p-DLA: A Predictive System Model for Onshore Oil and Gas Pipeline Dataset Classification and Monitoring-Part 1. arXiv preprint arXiv:1701.00040.

    10. J.O. Orove, N.E. Osegi & B.O. Eke (2014). A Multi-Gene Genetic Programming Application for Predicting Students Failure at School. African Journal of Computing & ICT, 7(3). Pp21-34.

  • Metrics
    No metrics available
Share - Bookmark