Towards highest peak intensities for ultra-short MeV-range ion bunches

Article English OPEN
Simon Busold ; Dennis Schumacher ; Christian Brabetz ; Diana Jahn ; Florian Kroll ; Oliver Deppert ; Ulrich Schramm ; Thomas E. Cowan ; Abel Blažević ; Vincent Bagnoud ; Markus Roth (2015)
  • Publisher: Nature Publishing Group
  • Journal: Scientific Reports, volume 5 (issn: 2045-2322, eissn: 2045-2322)
  • Related identifiers: doi: 10.1038/srep12459, pmc: PMC4515640
  • Subject: Article
    arxiv: Physics::Accelerator Physics

A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.
Share - Bookmark