## Global Optimization for Transport Network Expansion and Signal Setting

*Liu, Haoxiang*;

*Wang, David Z. W.*;

*Yue, Hao*;

- Publisher: Hindawi Publishing Corporation
- Journal: Mathematical Problems in Engineering (issn: 1024-123X, eissn: 1563-5147)
Related identifiers: doi: 10.1155/2015/385713 - Subject: TA1-2040 | Mathematics | Engineering (General). Civil engineering (General) | QA1-939 | Article Subject

- References (61)
Abdulaal, M., LeBlanc, L. J.. Continuous equilibrium network design models. Transportation Research Part B. 1979; 13 (1): 19-32

Tan, H. N., Gershwin, S. B., Athans, M.. Hybrid Optimization in Urban Traffic Networks. 1979

Cho, H.-J.. Sensitivity analysis of equilibrium network flows and its application to the development of solution methods for equilibrium network design problems [Ph.D. thesis]. 1988

Friesz, T. L., Tobin, R. L., Cho, H.-J., Mehta, N. J.. Sensitivity analysis based heuristic algorithms for mathematical programs with variational inequality constraints. Mathematical Programming. 1990; 48 (1–3): 265-284

Yang, H.. Sensitivity analysis for the elastic-demand network equilibrium problem with applications. Transportation Research Part B: Methodological. 1997; 31 (1): 55-70

Suwansirikul, C., Friesz, T. L., Tobin, R. L.. Equilibrium decomposed optimiztion: a heuristic for the continuous equilibrium network design problem. Transportation Science. 1987; 21 (4): 254-263

Poorzahedy, H., Turnquist, M. A.. Approximate algorithms for the discrete network design problem. Transportation Research Part B. 1982; 16 (1): 45-55

Solanki, R. S., Gorti, J. K., Southworth, F.. Using decomposition in large-scale highway network design with a quasi-optimization heuristic. Transportation Research B: Methodological. 1998; 33 (2): 127-140

Gao, Z., Wu, J., Sun, H.. Solution algorithm for the bi-level discrete network design problem. Transportation Research Part B: Methodological. 2005; 39 (6): 479-495

Luathep, P., Sumalee, A., Lam, W. H. K., Li, Z.-C., Lo, H. K.. Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach. Transportation Research Part B: Methodological. 2011; 45 (5): 808-827

- Metrics No metrics available

- Download from

- Cite this publication