Electronic Pumping of Quasiequilibrium Bose-Einstein Condensed Magnons

Article, Preprint English OPEN
Bender, S.A. ; Duine, R.A. ; Tserkovnyak, Y. (2012)
  • Publisher: AMER PHYSICAL SOC
  • Journal: PHYSICAL REVIEW LETTERS (issn: 0031-9007)
  • Related identifiers: doi: 10.1103/PhysRevLett.108.246601
  • Subject: Condensed Matter - Mesoscale and Nanoscale Physics | Condensed Matter - Quantum Gases
    arxiv: Condensed Matter::Quantum Gases | Condensed Matter::Strongly Correlated Electrons | Condensed Matter::Other

We theoretically investigate spin transfer between a system of quasiequilibrated Bose-Einstein-condensed magnons in an insulator in direct contact with a conductor. While charge transfer is prohibited across the interface, spin transport arises from the exchange coupling between insulator and conductor spins. In a normal insulator phase, spin transport is governed solely by the presence of thermal and spin-diffusive gradients; the presence of Bose-Einstein condensation (BEC), meanwhile, gives rise to a temperature-independent condensate spin current. Depending on the thermodynamic bias of the system, spin may flow in either direction across the interface, engendering the possibility of a dynamical phase transition of magnons. We discuss the experimental feasibility of observing a BEC steady state (fomented by a spin Seebeck effect), which is contrasted to the more familiar spin-transfer-induced classical instabilities.
  • References (20)
    20 references, page 1 of 2

    [1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995); M.- O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, Phys. Rev. Lett. 77, 416 (1996); M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, ibid. 91, 250401 (2003); M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006).

    [2] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Science 298, 199 (2002); J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyman┬┤ska, R. Andre┬┤, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature (London) 443, 409 (2006); R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007).

    [3] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature (London) 468, 545 (2010).

    [4] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hillebrands, and A. N. Slavin, Nature (London) 443, 430 (2006); V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov, and A. N. Slavin, Phys. Rev. Lett. 100, 047205 (2008).

    [5] D. Snoke, Nature (London) 443, 403 (2006).

    [6] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002); Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).

    [7] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

    [8] L. Berger, Phys. Rev. B 54, 9353 (1996).

    [9] G. E. W. Bauer and Y. Tserkovnyak, Physics 4, 40 (2011).

    [10] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.108.246601 for a discussion of the thermodynamics of spin transfer in our system and a proposal of possible methods by which to detect the predicted dynamical phase transition.

  • Metrics
    No metrics available
Share - Bookmark