Generalized N=2 Topological Amplitudes and Holomorphic Anomaly Equation

Article, Preprint English OPEN
Antoniadis, I. ; Hohenegger, S. ; Narain, K. S. ; Sokatchev, E. (2011)
  • Journal: NUCLEAR PHYSICS B (issn: 0550-3213)
  • Related identifiers: doi: 10.1016/j.nuclphysb.2011.11.011
  • Subject: High Energy Physics - Theory
    arxiv: High Energy Physics::Theory

In arXiv:0905.3629 we described a new class of N=2 topological amplitudes that depends both on vector and hypermultiplet moduli. Here we find that this class is actually a particular case of much more general topological amplitudes which appear at higher loops in heterotic string theory compactified on K3 x T^2. We analyze their effective field theory interpretation and derive particular (first order) differential equations as a consequence of supersymmetry Ward identities and the 1/2-BPS nature of the corresponding effective action terms. In string theory the latter get modified due to anomalous world-sheet boundary contributions, generalizing in a non-trivial way the familiar holomorphic and harmonicity anomalies studied in the past. We prove by direct computation that the subclass of topological amplitudes studied in arXiv:0905.3629 forms a closed set under these anomaly equations and that these equations are integrable.
  • References (7)

    [2] I. Antoniadis, E. Gava, K. S. Narain and T. R. Taylor, Topological amplitudes in string theory, Nucl. Phys. B 413 (1994) 162 [arXiv:hep-th/9307158].

    [3] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [arXiv:hep-th/9309140].

    [16] L. Andrianopoli, S. Ferrara, E. Sokatchev and B. Zupnik, Shortening of primary operators in N-extended SCFT(4) and harmonic-superspace analyticity, Adv. Theor. Math. Phys. 4 (2000) 1149 [arXiv:hep-th/9912007].

    [17] A. Galperin, E. Ivanov and O. Ogievetsky, Harmonic space and quaternionic manifolds, Annals Phys. 230 (1994) 201 [arXiv:hep-th/9212155].

    [18] J. Bagger and E. Witten, Nucl. Phys. B 222 (1983) 1.

    [19] S. Salamon, Invent. Math. 67 (1982) 143.

    [20] J. Wolf, J. Math. Mech. 14 (1965) 1033.

  • Metrics
    No metrics available
Share - Bookmark