Kick synchronization versus diffusive synchronization

Conference object, Preprint English OPEN
Mauroy, Alexandre ; Sacré, Pierre ; Sepulchre, Rodolphe (2012)
  • Subject: : Multidisciplinaire, généralités & autres [Ingénierie, informatique & technologie] | Computer Science - Systems and Control | Nonlinear Sciences - Adaptation and Self-Organizing Systems | : Multidisciplinary, general & others [Engineering, computing & technology] | Mathematics - Dynamical Systems

The paper provides an introductory discussion about two fundamental models of oscillator synchronization: the (continuous-time) diffusive model, that dominates the mathematical literature on synchronization, and the (hybrid) kick model, that accounts for most popular examples of synchronization, but for which only few theoretical results exist. The paper stresses fundamental differences between the two models, such as the different contraction measures underlying the analysis, as well as important analogies that can be drawn in the limit of weak coupling. Peer reviewed
  • References (85)
    85 references, page 1 of 9

    [1] L. F. Abbott. Lapicque's introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull., 50(5-6):303-304, Nov. 1999.

    [2] L. F. Abbott and C. van Vreeswijk. Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E, 48(2):1483-1490, Aug. 1993.

    [3] D. Angeli. A Lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control, 47(3):410-421, Mar. 2002.

    [4] M. Arcak. Passivity as a design tool for group coordination. IEEE Trans. Autom. Control, 52(8):1380-1390, Aug. 2007.

    [5] M. R. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld. Huygens's clocks. Proc. R. Soc. Lond. A, 458:563-579, Mar. 2002.

    [6] I. I. Blekhman. Synchronization in Science and Technology. American Society of Mechanical Engineers, 1988.

    [7] S. Bottani. Synchronization of integrate and fire oscillators with global coupling. Phys. Rev. E, 54(3):2334-2350, Sept. 1996.

    [8] P. C. Bressloff and S. Coombes. A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J. Appl. Math., 60(3):820-841, 2000.

    [9] E. T. Brown, P. Holmes, and J. Moehlis. Globally coupled oscillator networks. In E. Kaplan, J. E. Marsden, and K. R. Sreenivasan, editors, Perspectives and Problems in Nonlinear Science: a Celebratory Volume in Honor of Larry Sirovich, pages 183-215. Springer, New York, NY, 2003.

    [10] E. T. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16(4):673-715, Apr. 2004.

  • Metrics
    No metrics available
Share - Bookmark