publication . Article . Preprint . 2014

Fractal Dimension of Particle Showers Measured in a Highly Granular Calorimeter

J. C. Brient; D. Jeans; V. Boudry; H. Videau; Manqi Ruan;
Open Access
  • Published: 01 Jan 2014 Journal: Physical Review Letters, volume 112 (issn: 0031-9007, eissn: 1079-7114, Copyright policy)
  • Publisher: American Physical Society (APS)
We explore the fractal nature of particle showers using Monte-Carlo simulation. We define the fractal dimension of showers measured in a high granularity calorimeter designed for a future lepton collider. The shower fractal dimension reveals detailed information of the spatial configuration of the shower. %the information hidden in the details of shower spatial configuration, It is found to be characteristic of the type of interaction and highly sensitive to the nature of the incident particle. Using the shower fractal dimension, we demonstrate a particle identification algorithm that can efficiently separate electromagnetic showers, hadronic showers and non-sho...
arXiv: Physics::Instrumentation and DetectorsHigh Energy Physics::ExperimentAstrophysics::Instrumentation and Methods for AstrophysicsAstrophysics::High Energy Astrophysical Phenomena
free text keywords: General Physics and Astronomy, Detectors and Experimental Techniques, Common software tools [2], Reconstruction toolkit for HEP [2.3], Physics - Instrumentation and Detectors, High Energy Physics - Experiment, Nuclear physics, Calorimeter, Granularity, Fractal dimension, Particle identification, Monte Carlo method, Physics, Calorimeter (particle physics), Collider, law.invention, law, Particle
Funded by
Advanced European Infrastructures for Detectors at Accelerators
  • Funder: European Commission (EC)
  • Project Code: 262025
  • Funding stream: FP7 | SP4 | INFRA

∗ Corresponding author: [1] B. Cassen, Phys.Rev. 44, 513 (1933). [2] P. Auger, R. Maze, and T. Grivet-Mayer, C.R.Acad.Sci.

206, 1721 (1938). [3] R. Wigmans, Calorimetry Energy Measurement in Par-

ticle Physics (Clarendon Press, 2000). [4] T. Ohnishi, Can.J.Phys. 68, 906 (1990). [5] A. Haungs, J. Kempa, H. Mathes, H. Rebel, and

J. Wentz, Nucl.Instrum.Meth. A372, 515 (1996). [6] J. Kempa and M. Samorski, J.Phys. G24, 1039 (1998). [7] M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Le-

and N. Toge, Tech. Rep. CERN-2012-007. SLAC-R-985.

KEK-Report-2012-1. PSI-12-01. JAI-2012-001, CERN,

Geneva (2012). [8] J. Brau, Y. Okada, N. J. Walker, A. Djouadi, J. Lykken,

Study (CERN, Geneva, 2007). [9] T. Abe et al., Letter of intent DESY-2009-87, DESY

(2010). [10] B. Bilki, J. Butler, G. Mavromanolakis, E. May, E. Nor-

JINST 4, P10008 (2009). [11] M. Bedjidian, K. Belkadhi, V. Boudry, C. Combaret,

V. A. Gapienko, G. Grenier, et al., JINST 6, P02001

(2011). [12] L. Behr and P. Mittner, Nucl.Instrum.Meth. 20, 446

(1963). [13] A. Heister et al. (ALEPH Collaboration), Eur.Phys.J.

C20, 401 (2001), hep-ex/0104038.

Any information missing or wrong?Report an Issue