publication . Preprint . Article . 2013

Studies on the Cherenkov Effect for Improved Time Resolution of TOF-PET

S. E. Brunner; L. Gruber; J. Marton; K. Suzuki; A. Hirtl;
Open Access English
  • Published: 27 May 2013
Abstract
With the newly gained interest in the time-of-flight method for positron emission tomography (TOF-PET), many options for pushing the time resolution to its borders have been investigated. As one of these options, the exploitation of the Cherenkov effect has been proposed, since it allows to bypass the scintillation process and therefore provides almost instantaneous response to incident 511 keV annihilation photons. Our simulation studies on the yield of Cherenkov photons, their arrival rate at the photon detector, and their angular distribution reveal a significant influence by Cherenkov photons on the rise time of inorganic scintillators - a key-parameter for ...
Subjects
arXiv: Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaPhysics::Medical Physics
free text keywords: Physics - Instrumentation and Detectors, Physics - Medical Physics, Nuclear and High Energy Physics, Electrical and Electronic Engineering, Nuclear Energy and Engineering, Cherenkov radiation, Scintillator, Scintillation, Nuclear physics, Photon, Time of flight, Cherenkov detector, law.invention, law, Optics, business.industry, business, Electronic engineering, Physics, Positron, Scintillation counter
Related Organizations
Funded by
EC| HADRONPHYSICS3
Project
HADRONPHYSICS3
Study of Strongly Interacting Matter
  • Funder: European Commission (EC)
  • Project Code: 283286
  • Funding stream: FP7 | SP4 | INFRA
20 references, page 1 of 2

[1] P. Lecoq, E. Auffray, S. Brunner, H. Hillemanns, P. Jarron, A. Knapitsch, T. Meyer, and F. Powolny, “Factors Influencing Time Resolution of Scintillators and Ways to Improve Them,” IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp. 2411 2416, 2010. [OpenAIRE]

[2] R. Dolenec, S. Korpar, P. Krizan, R. Pestotnik, A. Stanovnik, and R. Verheyden, “Time-of-flight measurements with Cherenkov photons produced by 511 keV photons in lead crystals,” IEEE Nuclear Science Symp. Conf. Rec., pp. 280 284, 2010.

[3] S. E. Brunner, L. Gruber, J. Marton, K. Suzuki, and A. Hirtl, “New Approaches for Improvement of TOF-PET,” Nucl. Instrum. Methods Phys. Res. A, In press, Accepted Manuscript, http://dx.doi.org/10.1016/j.nima.2013.05.028. [OpenAIRE]

[4] S. E. Derenzo, M. J. Weber, E. Bourret-Courchesne, and M. K. Klintenberg, “The quest for the ideal inorganic scintillator,” Nucl. Instrum. Methods Phys. Res. A, vol. 505, pp. 111 117, 2003. [OpenAIRE]

[5] R. T. Williams, K. B. Ucer, and J. L. Lopresti, “In the first instants ... ultrafast views of radiation effects,” Radiation Measurements, vol. 33, no. 5, pp. 497 502, 2001.

[6] W. W. Moses and S. E. Derenzo, “Prospects for Time-of-Flight PET using LSO Scintillator,” IEEE Trans. Nucl. Sci., vol. 46, no. 3, pp. 474 478, 1999.

[7] Y. Shao, “A new timing model for calculating the intrinsic timing resolution of a scintillator detector,” Phys. Med. Biol., vol. 52, no. 4, pp. 1103 1117, Feb. 2007.

[8] Agostinelli et al.,“GEANT4 - A simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, pp. 250 303, 2003.

[9] S. E. Derenzo, M. J. Weber, W. W. Moses, and C. Dujardin, “Measurements of the Intrinsic Rise Times of Common Inorganic Scintillators,” IEEE Trans. Nucl. Sci., vol. 47, no. 3, pp. 860 864, 2000.

[10] S. Seifert, J. H. L. Steenbergen, H. T. Van Dam, and D. R. Schaart, “Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters,” Jour. Instr., vol. 7, P09004, 2012.

[11] R. Mao, L. Zhang, and R. Zhu, “Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics,” IEEE Nuclear Science Symp. Conf. Rec., vol. 3, pp. 2285 2291, 2007.

[12] E. Auffray, D. Abler, S. E. Brunner, B. Frisch, A. Knapitsch, P. Lecoq, G. Mavromanolakis, O. Poppe, and A. Petrosyan, “LuAG material for dual readout calorimetry at future high energy physics accelerators,” IEEE Nuclear Science Symp. Conf. Rec., pp. 2245 2249, 2009. [OpenAIRE]

[13] I. Dafinei, E. Auffray, M. Schneegans, V. Missevitch, V. B. Pavlenko, A. A. Fedorov, A. N. Annenkov, V. L. Kostylevd, and V. D. Ligun, “Lead tungstate (PbWO4) scintillators for LHC EM calorimetry,” Nucl. Instrum. Methods Phys. Res. A, vol. 365, no. 23, pp. 291 298, 1995.

[14] J. S. Salacka and M. K. Bacrania, “A Comprehensive Technique for Determining the Intrinsic Light Yield of Scintillators,” IEEE Trans. Nucl. Sci., vol. 57, pp. 901 909, 2010. [OpenAIRE]

[15] C.L. Melcher and J.S. Schweitzer, “A promising new scintillator: ceriumdoped lutetium oxyorthosilicate,” Nucl. Instrum. Methods Phys. Res. A, vol. 314, pp. 212 214, 1992.

20 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue