Shallow and deep convolutional networks for saliency prediction

Conference object, Preprint English OPEN
Pan, Junting; Sayrol Clols, Elisa; Giró Nieto, Xavier; McGuinness, Kevin; O'Connor, Noel;
(2016)
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • Identifiers: doi: 10.1109/CVPR.2016.71
  • Subject: :Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes [Àrees temàtiques de la UPC] | Image processing | Computer Science - Computer Vision and Pattern Recognition | Pattern recognition systems | Forecasting | Neural networks | Visió per ordinador | Machine learning | :So, imatge i multimèdia::Creació multimèdia::Imatge digital [Àrees temàtiques de la UPC] | Computer Science - Learning | Computer vision | Convolution | Reconeixement de formes (Informàtica)

The prediction of salient areas in images has been traditionally addressed with hand-crafted features based on neuroscience principles. This paper, however, addresses the problem with a completely data-driven approach by training a convolutional neural network (convnet)... View more
  • References (48)
    48 references, page 1 of 5

    [1] P. Agrawal, D. Stansbury, J. Malik, and J. L. Gallant. Pixels to voxels: Modeling visual representation in the human brain. arXiv preprint arXiv:1407.5104, 2014.

    [2] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio. Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590, 2012.

    [3] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a cpu and gpu math expression compiler. In Conference on Python for Scientific Computing, volume 4, page 3, 2010.

    [4] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and A. Torralba. Mit saliency benchmark. http://saliency.mit.edu/.

    [5] A. Carlier, A. Salvador, F. Cabezas, X. Giro-i Nieto, V. Charvillat, and O. Marques. Assessment of crowdsourcing and gamification loss in user-assisted object segmentation. Multimedia Tools and Applications, pages 1-28, 2015.

    [6] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In British Machine Vision Conference, 2014.

    [7] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. CoRR, abs/1412.7062, 2014.

    [8] R. Cichy, A. Khosla, D. Pantazis, A. Torralba, and A. Oliva. Mapping human visual representations in space and time by neural networks. Journal of vision, 15(12):376-376, 2015.

    [9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In IEEE Conference on Computer Vision and Pattern Recognition.

    [10] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1):98-136, 2014.

  • Metrics
Share - Bookmark