On pricing of interest rate derivatives

Preprint OPEN
T. Di Matteo; M. Airoldi; E. Scalas;
(2004)
  • Related identifiers: doi: 10.1016/j.physa.2004.03.042
  • Subject: Condensed Matter - Statistical Mechanics | Condensed Matter - Other Condensed Matter | Quantitative Finance - Statistical Finance

At present, there is an explosion of practical interest in the pricing of interest rate (IR) derivatives. Textbook pricing methods do not take into account the leptokurticity of the underlying IR process. In this paper, such a leptokurtic behaviour is illustrated using ... View more
  • References (18)
    18 references, page 1 of 2

    [1] A. R. Pagan, A. D. Hall, and V. Martin, 1997, Modeling the Term Structure, Handbook of Statistics 14, (Elsevier Science B. V.).

    [2] R. Rebonato, 1998, Interest-rate option models (John Wiley & Sons, New York. USA).

    [3] M. S. Joshi and R. Rebonato, Quantitative Finance 3 (2003) 458-469.

    [4] K. C. Chan, G. A. Karolyi, F. A. Longstaff and A. B Sanders, Journal of Finance 47 (1992) 1209-1227.

    [5] B. B. Mandelbrot, 1997, Fractals and Scaling in Finance (Springer-Verlag, Berlin, Germany).

    [6] R. N. Mantegna and H. E.Stanley, 2000, An Introduction to Econophysics (Cambridge University Press, Cambridge, UK).

    [7] M. M. Dacorogna, R. Gencay, U. A. Muller, R. Olsen, O. V. Pictet, 2001, An Introduction to High-Frequency Finance (Academic Press).

    [8] X. Zhao and P. Glasserman, Finance and Stocastics 4 (1999) 35-68.

    [9] T. Alderweireld, J. Nuyts, Physica A 331 (2004) 604-616.

    [11] S. M. Kay, S. L. Marple, Proceedings of the IEEE 69 (1981) 1380-1415.

  • Metrics
    No metrics available
Share - Bookmark