publication . Article . Other literature type . Preprint . 2015

explaining the proton radius puzzle with disformal scalars

Brax, Philippe; Burrage, Clare;
Open Access
  • Published: 11 Feb 2015 Journal: Physical Review D, volume 91 (issn: 1550-7998, eissn: 1550-2368, Copyright policy)
  • Publisher: American Physical Society (APS)
  • Country: Italy
Abstract
We analyse the consequences of a disformal interaction between a massless scalar and matter particles in the context of atomic physics. We focus on the displacement of the atomic energy levels that it induces, and in particular the change in the Lamb shift between the 2s and 2p states. We find that the correction to the Lamb shift depends on the mass of the fermion orbiting around the nucleus, implying a larger effect for muonic atoms. Taking the cut-off scale describing the effective scalar field theory close to the QCD scale, we find that the disformal interaction can account for the observed difference in the proton radius of muonic versus electronic Hydrogen...
Subjects
arXiv: Physics::Atomic Physics
free text keywords: Proton, Physics, Particle physics, Scalar (physics), Scalar field, Scalar (mathematics), Quantum chromodynamics, Scalar field theory, Quantum electrodynamics, Lamb shift, Massless particle, High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Theory
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
28 references, page 1 of 2

[1] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita and A. Dax et al., Nature 466 (2010) 213.

[2] I. T. Lorenz and U. -G. Meiner, arXiv:1406.2962 [hep-ph].

[3] R. Pohl, R. Gilman, G. A. Miller and K. Pachucki, Ann. Rev. Nucl. Part. Sci. 63 (2013) 175 [arXiv:1301.0905 [physics.atom-ph]].

[4] B. Batell, D. McKeen and M. Pospelov, Phys. Rev. Lett. 107 (2011) 011803 [arXiv:1103.0721 [hep-ph]].

[5] D. Tucker-Smith and I. Yavin, Phys. Rev. D 83 (2011) 101702 [arXiv:1011.4922 [hep-ph]].

[6] V. Barger, C. -W. Chiang, W. -Y. Keung and D. Marfatia, Phys. Rev. Lett. 106 (2011) 153001 [arXiv:1011.3519 [hep-ph]].

[7] S. G. Karshenboim, D. McKeen and M. Pospelov, arXiv:1401.6154 [hep-ph].

[8] J. Jaeckel and S. Roy, Phys. Rev. D 82 (2010) 125020 [arXiv:1008.3536 [hep-ph]].

[9] P. Brax and C. Burrage, Phys. Rev. D 83 (2011) 035020 [arXiv:1010.5108 [hep-ph]].

[10] B. Bertotti, L. Iess and P. Tortora, Nature 425 (2003) 374.

[11] J. G. Williams, S. G. Turyshev and D. Boggs, Class. Quant. Grav. 29 (2012) 184004 [arXiv:1203.2150 [gr-qc]].

[12] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026 (2004).

[13] J. Khoury and A. Weltman, Phys. Rev. Lett. 93 (2004) 171104 .

[14] A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197 [hep-th]].

[15] P. Brax and G. Pignol, Phys. Rev. Lett. 107 (2011) 111301 [arXiv:1105.3420 [hep-ph]].

28 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue