Persistent chimera states in nonlocally coupled phase oscillators

Article, Preprint English OPEN
Suda, Yusuke ; Okuda, Koji (2015)
  • Publisher: American Physical Society (APS)
  • Journal: Physical review E, volume 92, issue 6 (issn: 1539-3755)
  • Related identifiers: doi: 10.1103/PhysRevE.92.060901
  • Subject: Nonlinear Sciences - Adaptation and Self-Organizing Systems
    mesheuropmc: fungi
    arxiv: Quantitative Biology::Neurons and Cognition | Nonlinear Sciences::Pattern Formation and Solitons | Nonlinear Sciences::Cellular Automata and Lattice Gases | Nonlinear Sciences::Adaptation and Self-Organizing Systems

Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.
  • References (30)
    30 references, page 1 of 3

    bridge University Press, Cambridge, 2003). [3] Y. Kuramoto and D. Battogtokh, Nonlinear Phenom.

    Complex Syst. 5, 380 (2002). [4] D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93,

    174102 (2004). [5] S. I. Shima and Y. Kuramoto, Phys. Rev. E 69, 036213

    (2004). [6] D. M. Abrams and S. H. Strogatz, Int. J. Bifurcation

    Chaos 16, 21 (2006). [7] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A.

    Wiley, Phys. Rev. Lett. 101, 084103 (2008). [8] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008). [9] E. Ott and T. M. Antonsen, Chaos 19, 023117 (2009). [10] E. A. Martens, C. R. Laing, and S. H. Strogatz, Phys.

    Rev. Lett. 104, 044101 (2010). [11] O. E. Omel'chenko, M. Wolfrum, and Y. L. Maistrenko,

    Phys. Rev. E 81, 065201(R) (2010). [12] M. Wolfrum, O. E. Omel'chenko, S. Yanchuk, and Y. L.

    Maistrenko, Chaos 21, 013112 (2011). [13] M. Wolfrum and O. E. Omel'chenko, Phys. Rev. E 84,

    015201(R) (2011). [14] I. Omelchenko, Y. Maistrenko, P. H¨ovel, and E. Sch¨oll,

  • Metrics
    No metrics available
Share - Bookmark