publication . Article . 2014

A comparative assessment of IGCC plants with various CO2 capture technologies producing electricity and hydrogen

Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennel, Paul;
Open Access English
  • Published: 21 Jan 2014 Journal: Energy & Fuels, volume 28, issue 2, pages 1,028-1,040 (issn: 0887-0624, eissn: 1520-5029, Copyright policy)
  • Publisher: American Chemical Society
Abstract
Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emis...
Subjects
free text keywords: Article
49 references, page 1 of 4

(1) Holloway, S.; Pearce, J. M.; Hards, V. L.; Ohsumi, T.; Gale, J.

Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy 2007, 32 (7), 1194−1201.

(2) Taseska, V.; Markovska, N.; Causevski, A.; Bosevski, T.; PopJordanov, J. Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite. Energy 2011, 36 (4), 2266− 2270.

(3) International Energy Outlook; Energy Information Administration (EIA): Washington DC, 2008. http://www.eia.gov/forecasts/ieo/ more_highlights.cfm (accessed Feb. 12, 2013) (4) Cayan, D. R.; Maurer, E. P.; Dettinger, M. D.; Tyree, M.; Hayhoe, K. Climate Change Scenarios for the California Region; Springer Science: New York, 2008.

(5) Longwell, J. P.; Rubin, E. S.; Wilson, J. Coal: Energy for the future. Prog. Energy Combust. Sci. 1995, 21 (4), 269−360.

(6) Minchener, A. J.; McMullan, J. T. Sustainable clean coal power generation within a European contextThe view in 2006. Fuel 2007, 86 (14), 2124−2133.

(7) Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M.

J.; Brandani, S.; Mac Dowell, N.; Fernandez, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130−189.

(8) Chiesa, P.; Consonni, S.; Kreutz, T.; Robert, W. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions. Int. J. Hydrogen Energy 2005, 30 (7), 747−767.

(9) Damen, K.; Troost, M. v.; Faaij, A.; Turkenburg, W. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Prog. Energy Combust. Sci. 2006, 32 (2), 215−246. [OpenAIRE]

(10) Cormos, C.-C. Assessment of hydrogen and electricity coproduction schemes based on gasification process with carbon capture and storage. Int. J. Hydrogen Energy 2009, 34 (15), 6065−6077.

(11) Cormos, C.-C. Evaluation of energy integration aspects for IGCC-based hydrogen and electricity co-production with carbon capture and storage. Int. J. Hydrogen Energy 2010, 35 (14), 7485− 7497. [OpenAIRE]

(12) Cormos, C.-C. Evaluation of syngas-based chemical looping applications for hydrogen and power co-generation with CCS. Int. J.

Hydrogen Energy 2012, 37 (18), 13371−13386.

(13) Li, F.; Fan, L.-S. Clean coal conversion processesProgress and challenges. Energy Environ. Sci. 2008, 1 (2), 248−267.

49 references, page 1 of 4
Abstract
Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emis...
Subjects
free text keywords: Article
49 references, page 1 of 4

(1) Holloway, S.; Pearce, J. M.; Hards, V. L.; Ohsumi, T.; Gale, J.

Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy 2007, 32 (7), 1194−1201.

(2) Taseska, V.; Markovska, N.; Causevski, A.; Bosevski, T.; PopJordanov, J. Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite. Energy 2011, 36 (4), 2266− 2270.

(3) International Energy Outlook; Energy Information Administration (EIA): Washington DC, 2008. http://www.eia.gov/forecasts/ieo/ more_highlights.cfm (accessed Feb. 12, 2013) (4) Cayan, D. R.; Maurer, E. P.; Dettinger, M. D.; Tyree, M.; Hayhoe, K. Climate Change Scenarios for the California Region; Springer Science: New York, 2008.

(5) Longwell, J. P.; Rubin, E. S.; Wilson, J. Coal: Energy for the future. Prog. Energy Combust. Sci. 1995, 21 (4), 269−360.

(6) Minchener, A. J.; McMullan, J. T. Sustainable clean coal power generation within a European contextThe view in 2006. Fuel 2007, 86 (14), 2124−2133.

(7) Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M.

J.; Brandani, S.; Mac Dowell, N.; Fernandez, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130−189.

(8) Chiesa, P.; Consonni, S.; Kreutz, T.; Robert, W. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions. Int. J. Hydrogen Energy 2005, 30 (7), 747−767.

(9) Damen, K.; Troost, M. v.; Faaij, A.; Turkenburg, W. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Prog. Energy Combust. Sci. 2006, 32 (2), 215−246. [OpenAIRE]

(10) Cormos, C.-C. Assessment of hydrogen and electricity coproduction schemes based on gasification process with carbon capture and storage. Int. J. Hydrogen Energy 2009, 34 (15), 6065−6077.

(11) Cormos, C.-C. Evaluation of energy integration aspects for IGCC-based hydrogen and electricity co-production with carbon capture and storage. Int. J. Hydrogen Energy 2010, 35 (14), 7485− 7497. [OpenAIRE]

(12) Cormos, C.-C. Evaluation of syngas-based chemical looping applications for hydrogen and power co-generation with CCS. Int. J.

Hydrogen Energy 2012, 37 (18), 13371−13386.

(13) Li, F.; Fan, L.-S. Clean coal conversion processesProgress and challenges. Energy Environ. Sci. 2008, 1 (2), 248−267.

49 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2014

A comparative assessment of IGCC plants with various CO2 capture technologies producing electricity and hydrogen

Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennel, Paul;