Exponential rate of convergence in current reservoirs

Article, Preprint, Other literature type English OPEN
De Masi, Anna ; Presutti, Errico ; Tsagkarogiannis, Dimitrios ; Vares, Maria Eulalia (2015)
  • Publisher: Bernoulli Society for Mathematical Statistics and Probability
  • Journal: (issn: 1350-7265)
  • Related identifiers: doi: 10.3150/14-BEJ628
  • Subject: exponential convergence to the stationary measure | Mathematics - Probability | interacting particle systems | QA273

In this paper, we consider a family of interacting particle systems on $[-N,N]$ that arises as a natural model for current reservoirs and Fick's law. We study the exponential rate of convergence to the stationary measure, which we prove to be of the order $N^{-2}$.
  • References (11)
    11 references, page 1 of 2

    [1] Bertini, L; De Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C. (2006) Non equilibrium current fluctuations in stochastic lattice gases J. Stat. Phys. 123, Number 2, 237-276.

    [2] Bodineau, T.; Derrida, B. (2006) Current large deviations for Asymmetric Exclusion Processes with open boundaries, J. Stat. Phys. 123, No. 2, 277-300.

    [3] Bodineau, T.; Derrida, B.; Lebowitz, J.L (2010) A diffusive system driven by a battery or by a smoothly varying field. J. Stat. Phys 140, 648-675.

    [4] De Masi, A.; Presutti, E.; Tsagkarogiannis, D.; Vares, M. E. Current reservoirs in the simple exclusion process, (2011) J. Stat. Phys. 144, n. 6

    [5] De Masi, A; Presutti, E.; Tsagkarogiannis, D.; Vares, M. E. (2012) Truncated correlations in the stirring process with births and deaths. E. J. Probab. 17, p. 1-35

    [6] De Masi, A.; Presutti, E.; Tsagkarogiannis, D.; Vares, M. E. Non equilibrium stationary state for the symmetric simple exclusion with births and deaths, (2012) J. Stat. Phys. 146 , 519-528

    [7] De Masi, A.; Presutti, E.; Tsagkarogiannis, D.; Vares, M. E. Extinction time for a random walk in a random environment (preprint)

    [8] Derrida, B.; Lebowitz, J. L.; Speer, E. R. (2002) Large deviation of the density drofile in the steady state of the symmetric simple exclusion process, J. Stat. Phys. 107, 599- 634.

    [9] Liggett, T. (1985) Interacting particle systems, A series of comprehensive studies in Mathematics 276, Springer-Verlag

    [10] Lu, S.L.; Yau, H.-T. (1993) Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156, 399-433.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Sussex Research Online - IRUS-UK 0 20
Share - Bookmark