Manifolds of holomorphic mappings from strongly pseudoconvex domains

Preprint, Other literature type English OPEN
Forstneric, Franc;
  • Publisher: International Press of Boston
  • Journal: issn: 1093-6106
  • Publisher copyright policies & self-archiving
  • Subject: 58D15 | 32E10 | 32E30 | 54C35 | 58B12 | 46T10 | 32H02 | 32E10, 32E30, 32H02, 46G20, 46T10, 54C35, 58B12, 58D15 | 46G20 | strongly pseudoconvex domains | manifolds of holomorphic mappings | Mathematics - Functional Analysis | Mathematics - Complex Variables | Stein manifolds
    arxiv: Mathematics::Symplectic Geometry | Mathematics::Complex Variables

Let D be a bounded strongly pseudoconvex domain in a Stein manifold S and let Y be a complex manifold. We prove that the graph of any continuous map from the closure of D to Y which is holomorphic in D admits a basis of open Stein neighborhoods in S x Y. Using this we s... View more
  • References (38)
    38 references, page 1 of 4

    1. Calder´on, A.-P., Lebesgue spaces of differentiable functions and distributions. Proc. Sympos. Pure Math., Vol. IV, 33-49, American Mathematical Society, Providence, R.I., 1961.

    2. Campana, F., Peternell, T., Cycle spaces. Several complex variables, VII, 319-349, Encyclopaedia Math. Sci., 74, Springer, Berlin, 1994.

    3. Cantor, M. Spaces of functions with asymptotic conditions on Rn. Indiana Univ. Math. J., 24 (1974/75), 897-902.

    4. Catlin, D., A Newlander-Nirenberg theorem for manifolds with boundary. Michigan Math. J., 35 (1988), 233-240.

    5. Chaumat, J., Chollet, A.-M., Ensembles pics pour A∞(D). Ann. Inst. Fourier (Grenoble), 29 (1979), 171-200.

    6. Chaumat, J., Chollet, A.-M., Caract´erisation et propri´et´es des ensembles localement pics de A∞(D). Duke Math. J., 47 (1980), 763-787.

    7. Diederich, K., Fornaess, J.-E., Pseudoconvex domains: an example with nontrivial Nebenhu¨lle. Math. Ann., 225 (1977), 275-292.

    8. Dineen, S., Complex analysis on infinite dimensional spaces. Springer, Berlin, 1999.

    9. Docquier, F., Grauert, H., Levisches Problem und Rungescher Satz fu¨r Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann., 140 (1960), 94-123.

    10. Drinovec-Drnovˇsek, B., Forstneriˇc, F., Holomorphic curves in complex spaces. Duke Math. J., to appear. arXiv: math.CV/0604118

  • Similar Research Results (2)
  • Metrics
Share - Bookmark