publication . Article . Other literature type . Preprint . 2016

Cosmology and the neutrino mass ordering

Thomas Schwetz; Steen Hannestad;
Open Access English
  • Published: 18 Nov 2016 Journal: Journal of Cosmology and Astroparticle Physics, volume 2,016, issue 11, pages 35-35 (eissn: 1475-7516, Copyright policy)
We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds of normal versus inverted ordering. We apply the method for a specific set of current data from Planck CMB data and large-scale structure surveys, providing an upper bound on the sum of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain posterior odds for normal versus inverted ordering of about 2:1. If cosmological data is combined with data from oscillation experiments the odds reduce to about 3:2...
arXiv: Astrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Phenomenology, Astronomy and Astrophysics, Cosmology, Upper and lower bounds, Particle physics, Planck, symbols.namesake, symbols, Neutrino oscillation, Bayesian inference, Cosmic microwave background, Neutrino, Physics, Cosmic background radiation
Funded by
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
37 references, page 1 of 3

[1] NOvA, M. D. Messier, Extending the Nova Physics Program, in Community Summer Study 2013: Snowmass on the Mississippi (CsS2013) Minneapolis, MN, USA, July 29-August 6, 2013, 2013. 1308.0106.

[2] DUNE, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: the Physics Program for DUNE at LBNF, 1512.06148.

[3] IceCube PINGU, M. G. Aartsen et al., Letter of Intent: the Precision Icecube Next Generation Upgrade (PINGU), 1401.2046.

[4] JUNO, Z. Djurcic et al., JUNO Conceptual Design Report, 1508.07166.

[5] ICAL, S. Ahmed et al., Physics Potential of the Ical Detector at the India-Based Neutrino Observatory (INO), 1505.07380.

[6] M. Blennow, P. Coloma, P. Huber, and T. Schwetz, Quantifying the Sensitivity of Oscillation Experiments to the Neutrino Mass Ordering, JHEP 03 (2014) 028, [1311.1822].

[7] J. Lesgourgues, S. Pastor, and L. Perotto, Probing Neutrino Masses with Future Galaxy Redshift Surveys, Phys. Rev. D70 (2004) 045016, [hep-ph/0403296]. [OpenAIRE]

[8] A. Slosar, Detecting Neutrino Mass Di erence with Cosmology, Phys. Rev. D73 (2006) 123501, [astro-ph/0602133].

[9] R. Jimenez, T. Kitching, C. Pena-Garay, and L. Verde, Can We Measure the Neutrino Mass Hierarchy in the Sky?, JCAP 1005 (2010) 035, [1003.5918].

[10] J. Hamann, S. Hannestad, and Y. Y. Y. Wong, Measuring Neutrino Masses with a Future Galaxy Survey, JCAP 1211 (2012) 052, [1209.1043].

[11] M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, Updated Fit to Three Neutrino Mixing: Status of Leptonic CP Violation, JHEP 11 (2014) 052, [1409.5439]. NuFit version 2.1

[12] Planck, P. A. R. Ade et al., Planck 2015 Results. XIII. Cosmological Parameters, 1502.01589.

[13] N. Palanque-Delabrouille et al., Neutrino masses and cosmology with Lyman-alpha forest power spectrum, JCAP 1511 (2015), no. 11 011, [1506.05976].

[14] A. J. Cuesta, V. Niro, and L. Verde, Neutrino Mass Limits: Robust Information from the Power Spectrum of Galaxy Surveys, Phys. Dark Univ. 13 (2016) 77{86, [1511.05983].

[15] Q.-G. Huang, K. Wang, and S. Wang, Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations, 1512.05899.

37 references, page 1 of 3
Any information missing or wrong?Report an Issue