Existence of global weak solutions to the kinetic Peterlin model

Preprint, Article English OPEN
Gwiazda, Piotr; Lukáčová-Medviďová, Mária; Mizerová, Hana; Świerczewska-Gwiazda, Agnieszka;
(2017)
  • Identifiers: doi: 10.1016/j.nonrwa.2018.05.016
  • Subject: Navier–Stokes–Fokker–Planck system | Mathematics - Analysis of PDEs | kinetic theory | Peterlin approximation | dilute polymer solutions
    arxiv: Physics::Fluid Dynamics

We consider a class of kinetic models for polymeric fluids motivated by the Peterlin dumbbell theories for dilute polymer solutions with a nonlinear spring law for an infinitely extensible spring. The polymer molecules are suspended in an incompressible viscous Newtonia... View more
  • References (15)
    15 references, page 1 of 2

    [1] J. W. Barrett and E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: finitely extensible nonlinear bead-spring chains, Math. Models Methods Appl. Sci., 21 (2011), pp. 1211-1289.

    [2] [3] [4] [5] , Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type models, Math. Models Methods Appl. Sci., 22 (2012). , Existence of global weak solutions to compressible isentropic finitely extensible beadspring chain models for dilute polymers, Math. Models Methods Appl. Sci., 26 (2016), pp. 469-568.

    , Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead-spring chain models for dilute polymers: the two-dimensional case, J. Differential Equations, 261 (2016), pp. 592-626.

    , Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids, ArXiv, (2017).

    [6] P. Degond and H. Liu, Kinetic models for polymers with inertial effects, Netw. Heterog. Media, 4 (2009), pp. 625-647.

    [7] J. A. Dubinski˘i, Weak convergence for nonlinear elliptic and parabolic equations, Mat. Sb. (N.S.), 67 (1965), pp. 609-642.

    [8] M. Lukáčová-Medviďová, H. Mizerová, Nečasová, Š., and M. Renardy, Global existence result for the Peterlin viscoelastic model, SIAM J. Math. Anal., (2017).

    [9] M. Lukáčová-Medviďová, H. Mizerová, H. Notsu, and M. Tabata, Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part I: A nonlinear scheme, ESAIM: M2AN, in press, (2017).

    [10] , Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part II: A linear scheme, ESAIM: M2AN, in press, (2017).

    [11] H. Mizerová, Analysis and simulation of some viscoelastic fluids, PhD thesis (in preparation), University of Mainz, Germany, 2015.

  • Similar Research Results (4)
  • Metrics
Share - Bookmark