Potential theory in several quaternionic variables

Preprint, Other literature type English OPEN
Wan, Dongrui; Kang, Qianqian;
(2017)

In this paper, we establish the quaternionic versions of the potential description of various "small" sets related to the quaternionic plurisubharmonic functions in $\mathbb{H}^n$. We use the quaternionic capacity introduced in \cite{wan4} to characterize the $(-\infty)... View more
  • References (24)
    24 references, page 1 of 3

    [1] D. Wan, W. Zhang, Quasicontinuity and maximality of quaternionic plurisubharmonic functions, J. Math. Anal. Appl. 424 (2015) 86-103. doi:10.1016/j.matpur.2012.10.002.

    [2] E. Bedford, Envelopes of continuous, plurisubharmonic functions, Math. Ann. 251 (2) (1980) 175-183. doi:10.1007/BF01536184.

    [3] E. Bedford, Extremal plurisubharmonic functions and pluripolar sets in C2, Math. Ann. 249 (3) (1980) 205-223. doi:10.1007/BF01363896.

    [4] E. Bedford, Survey of pluri-potential theory, in: Several complex variables (Stockholm, 1987/1988), Vol. 38 of Math. Notes, Princeton Univ. Press, Princeton, NJ, 1993, pp. 48-97.

    [5] E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1-2) (1982) 1-40. doi:10.1007/BF02392348.

    [6] J.-P. Demailly, Mesures de Monge-Amp`ere et mesures pluriharmoniques, Math. Z. 194 (4) (1987) 519-564. doi:10.1007/BF01161920.

    [7] J.-P. Demailly, Potential theory in several complex variablesPreprint.

    [8] J.-P. Demailly, Monge-Amp`ere operators, Lelong numbers and intersection theory, in: Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115-193.

    [9] U. Cegrell, Capacities in complex analysis, ematics, E14, Friedr. Vieweg & Sohn, doi:10.1007/978-3-663-14203-4. Aspects of MathBraunschweig, 1988.

    [10] U. Cegrell, Pluricomplex energy, Acta Math. 180 (2) (1998) 187-217. doi:10.1007/BF02392899.

  • Related Organizations (2)
  • Metrics
Share - Bookmark