A Radial Age Gradient in the Geometrically Thick Disk of the Milky Way

Preprint, Article English OPEN
Martig, M ; Minchev, I ; Ness, M ; Fouesneau, M ; Rix, H-W
  • Publisher: American Astronomical Society; IOP Publishing
  • Related identifiers: doi: 10.3847/0004-637X/831/2/139
  • Subject: QB | QC | QD | Astrophysics - Astrophysics of Galaxies
    arxiv: Astrophysics::Galaxy Astrophysics | Astrophysics::Cosmology and Extragalactic Astrophysics | Astrophysics::Earth and Planetary Astrophysics | Astrophysics::Solar and Stellar Astrophysics

In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age; or geometrically, as stars high above the mid-plane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale-lengths, and their red colors suggest that they are uniformly old. The Milky Way's geometrically thick disk is also radially extended, but it is far from chemically uniform: alpha-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks' outer regions, bringing those stars high above the mid-plane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically-defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ~9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.
  • References (26)
    26 references, page 1 of 3

    Adibekyan, V. Z., Sousa, S. G., Santos, N. C., et al. 2012, A&A, 545, A32 Bensby, T., Alves-Brito, A., Oey, M. S., Yong, D., & Meléndez, J. 2011, ApJL, 735, L46

    Bensby, T., Feltzing, S., & Lundström, I. 2003, A&A, 410, 527 Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71 Bovy, J., Nidever, D. L., Rix, H.-W., et al. 2014, ApJ, 790, 127 Bovy, J., Rix, H.-W., Liu, C., et al. 2012, ApJ, 753, 148

    Bovy, J., Rix, H.-W., Schlafly, E. F., et al. 2016, ApJ, 823, 30 Burstein, D. 1979, ApJ, 234, 829

    Casagrande, L., Silva Aguirre, V., Schlesinger, K. J., et al. 2016, MNRAS, 455, 987

    Chen, Y., Girardi, L., Bressan, A., et al. 2014, MNRAS, 444, 2525 Cheng, J. Y., Rockosi, C. M., Morrison, H. L., et al. 2012a, ApJ, 746, 149 Cheng, J. Y., Rockosi, C. M., Morrison, H. L., et al. 2012b, ApJ, 752, 51 Comerón, S., Elmegreen, B. G., Knapen, J. H., et al. 2011, ApJ, 741, 28 Comerón, S., Elmegreen, B. G., Salo, H., et al. 2012, ApJ, 759, 98 Comerón, S., Salo, H., Janz, J., Laurikainen, E., & Yoachim, P. 2015, A&A, 584, A34

    Dalcanton, J. J., & Bernstein, R. A. 2002, AJ, 124, 1328 Fuhrmann, K. 1998, A&A, 338, 161

    García Pérez, A. E., Allende Prieto, C., Holtzman, J. A., et al. 2016, AJ, 151, 144

    Gilmore, G., & Reid, N. 1983, MNRAS, 202, 1025

    Gilmore, G., & Wyse, R. F. G. 1985, AJ, 90, 2015

    Girardi, L., & Salaris, M. 2001, MNRAS, 323, 109

  • Similar Research Results (3)
  • Metrics
    No metrics available
Share - Bookmark