Optimisation du temps de réponse du système de recommandation pour l'évaluation MIMICRY

Conference object French OPEN
Follet, Damien; Delestre, Nicolas; Malandain, Nicolas; Vercouter, Laurent;
  • Publisher: HAL CCSD
  • Subject: Recommender system | optimisation | [INFO.EIAH]Computer Science [cs]/Technology for Human Learning | optimization | grille d'évaluation | indépendant du domaine | apprentissage artificiel | machine learning | [ INFO.EIAH ] Computer Science [cs]/Technology for Human Learning | criteria grid | domain-independent | Système de recommandation

International audience; Assessment through criteria grids is increasingly widespread. It eases student's learning but also makes assessment harder for teachers. We present a useful, usable and domain-independent criteria-grid assessment recommender system based on machi... View more
  • References (8)

    1. Rust, C., Price, M., & O'Donovan, B. (2003). Improving students' learning by developing their understanding of assessment criteria and processes. Dans Assessment & Evaluation in Higher Education, 28(2), 147-164.

    2. Follet, D., Delestre, N., Malandain, N., & Vercouter, L. (2014, Novembre). Définition expérimentale du cadre de fonctionnement d'un système d'évaluation par grille basé sur l'apprentissage articiel. Dans TICE 2014.

    3. Follet, D., Delestre, N., Malandain, N., & Vercouter, L. (2013, Décembre). A three-step classification algorithm to assist criteria grid assessment. Dans NIPS 2013, Workshop Data Driven Education.

    4. Legg. S., (2011). Solomonoff induction (technical report cdmtcs-030), centre for discrete mathematics and theoretical computer science, university of Auckland.

    5. Solomonoff. Ray J. (2009). Algorithmic probability: Theory and applications. Dans Information Theory and Statistical Learning, pages 1-23. Springer.

    6. Mitchell, Tom M. (1982). Generalization as search. Dans Artificial Intelligence 18 (2): 203- 226.

    7. Rendell, L. (1986). A general framework for induction and a study of selective induction. Dans Machine Learning 1 (2): 177-226.

    8. Adriaans, P., & Vitanyi, P. (2007, Juin). The power and perils of MDL. Dans Information Theory, 2007. ISIT 2007. IEEE International Symposium on (pp. 2216-2220). IEEE.

  • Metrics