publication . Article . Conference object . Other literature type . 2018

High Fat Diet Attenuates the Anticontractile Activity of Aortic PVAT via a Mechanism Involving AMPK and Reduced Adiponectin Secretion.

Tarek A. M. Almabrouk; Tarek A. M. Almabrouk; Anna D. White; Azizah B. Ugusman; Azizah B. Ugusman; Dominik S. Skiba; Dominik S. Skiba; Omar J. Katwan; Omar J. Katwan; Husam Alganga; ...
Open Access English
  • Published: 01 Feb 2018
Abstract
Background and aim: Perivascular adipose tissue (PVAT) positively regulates vascular function through production of factors such as adiponectin but this effect is attenuated in obesity. The enzyme AMP-activated protein kinase (AMPK) is present in PVAT and is implicated in mediating the vascular effects of adiponectin. In this study, we investigated the effect of an obesogenic high fat diet (HFD) on aortic PVAT and whether any changes involved AMPK.\ud \ud Methods: Wild type Sv129 (WT) and AMPKα1 knockout (KO) mice aged 8 weeks were fed normal diet (ND) or HFD (42% kcal fat) for 12 weeks. Adiponectin production by PVAT was assessed by ELISA and AMPK expression st...
Subjects
free text keywords: perivascular adipose tissue, AMPK, high-fat diet, adiponectin, anticontractile effect, Physiology, Original Research, QP1-981, Physiology (medical), Adiponectin secretion, Adipose tissue, Chemistry, Internal medicine, medicine.medical_specialty, medicine, Normal diet, Inflammation, medicine.symptom, Endocrinology, M2 Macrophage, Protein kinase A
56 references, page 1 of 4

Aghamohammadzadeh, R., Withers, S., Lynch, F., Greenstein, A., Malik, R., and Heagerty, A. (2012). Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br. J. Pharmacol. 165, 670-682. doi: 10.1111/j.1476-5381.2011.01479.x

Almabrouk, T. A., Ewart, M. A., Salt, I. P., and Kennedy, S. (2014). Perivascular fat, AMP-activated protein kinase and vascular diseases. Br. J. Pharmacol. 171, 595-617. doi: 10.1111/bph.12479 [OpenAIRE]

Almabrouk, T. A. M. (2017). Role of AMP-Protein Kinase (AMPK) in Regulation of Perivascular Adipose Tissue (PVAT) Function. Ph.D. thesis, University of Glasgow. Available online at: http://encore.lib.gla.ac.uk/iii/encore/record/C__ Rb3271692

Almabrouk, T. A., Ugusman, A. B., Katwan, O. J., Salt, I. P., and Kennedy, S. (2017). Deletion of AMPKalpha1 attenuates the anticontractile effect of perivascular adipose tissue (PVAT) and reduces adiponectin release. Br. J. Pharmacol. 174, 3398-3410. doi: 10.1111/bph.13633 [OpenAIRE]

Bailey-Downs, L. C., Tucsek, Z., Toth, P., Sosnowska, D., Gautam, T., Sonntag, W. E., et al. (2013). Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J. Gerontol. A Biol. Sci. Med. Sci. 68, 780-792. doi: 10.1093/gerona/gls238

Bijland, S., Mancini, S. J., and Salt, I. P. (2013). Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin. Sci. 124, 491-507. doi: 10.1042/CS20120536 [OpenAIRE]

Carling, D., Mayer, F. V., Sanders, M. J., and Gamblin, S. J. (2011). AMPactivated protein kinase: nature's energy sensor. Nat. Chem. Biol. 7, 512-518. doi: 10.1038/nchembio.610

Chatterjee, T. K., Stoll, L. L., Denning, G. M., Harrelson, A., Blomkalns, A. L., Idelman, G., et al. (2009). Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ. Res. 104, 541-549. doi: 10.1161/CIRCRESAHA.108.182998

Chen, Y., Xu, X., Zhang, Y., Liu, K., Huang, F., Liu, B., et al. (2016). Diosgenin regulates adipokine expression in perivascular adipose tissue and ameliorates endothelial dysfunction via regulation of AMPK. J. Steroid Biochem. Mol. Biol. 155, 155-165. doi: 10.1016/j.jsbmb.2015.07.005

da Silva Franco, N., Lubaczeuski, C., Guizoni, D. M., Victorio, J. A., Santos-Silva, J. C., Brum, P. C., et al. (2017). Propranolol treatment lowers blood pressure, reduces vascular inflammatory markers and improves endothelial function in obese mice. Pharmacol. Res. 122, 35-45. doi: 10.1016/j.phrs.2017.05.018

Deng, G., Long, Y., Yu, Y. R., and Li, M. R. (2010). Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int. J. Obes. 34, 165-171. doi: 10.1038/ijo.2009.205

Dubrovska, G., Verlohren, S., Luft, F. C., and Gollasch, M. (2004). Mechanisms of ADRF release from rat aortic adventitial adipose tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1107-H1113. doi: 10.1152/ajpheart.00656.2003 [OpenAIRE]

Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M., and Paschke, R. (2002). Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 290, 1084-1089. doi: 10.1006/bbrc.2001.6307

Fasshauer, M., Kralisch, S., Klier, M., Lossner, U., Bluher, M., Klein, J., et al. (2003). Adiponectin gene expression and secretion is inhibited by interleukin6 in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 301, 1045-1050. doi: 10.1016/S0006-291X(03)00090-1 [OpenAIRE]

Fésüs, G., Dubrovska, G., Gorzelniak, K., Kluge, R., Huang, Y., Luft, F. C., et al. (2007). Adiponectin is a novel humoral vasodilator. Cardiovasc. Res. 75, 719-727. doi: 10.1016/j.cardiores.2007.05.025

56 references, page 1 of 4
Any information missing or wrong?Report an Issue