## New entropy estimates for the Oldroyd-B model, and related models

*Hu , Dan*;

*Lelievre , Tony*;

- Publisher: HAL CCSD
- Journal: issn: 1539-6746
- Subject: 35B45, 76A10 | conformation tensor | 76A05 | [ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA] | FENE-P | 35B45 | FENE-P model | Oldroyd-B model | Oldroyd-B | entropy | 35Q35 | entropy estimates | Mathematics - Numerical Analysis | a priori estimate

- References (9)
[1] R.B. Bird, C.F. Curtiss, R.C. Armstrong, and O. Hassager. Dynamics of polymeric liquids, volume 2. Wiley Interscience, 1987.

[2] R.B. Bird, P.J. Dotson, and N.L. Johnson. Polymer solution rheology based on a finitely extensible bead-spring chain model. J. Non-Newtonian Fluid Mech., 7:213-235, 1980. Errata: J. Non-Newtonian Fluid Mech., 8 (1981) 193.

[3] R. Fattal and R. Kupferman. Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech., 123:281-285, 2004.

[4] R. Fattal and R. Kupferman. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. NonNewtonian Fluid Mech., 126:23-37, 2005.

[5] B. Jourdain, C. Le Bris, T. Leli`evre, and F. Otto. Long-time asymptotics of a multiscale model for polymeric fluid flows. Archive for Rational Mechanics and Analysis, 181(1):97-148, 2006.

[6] B. Jourdain and T. Leli`evre. Convergence of a stochastic particle approximation of the stress tensor for the FENE-P model, 2004. CERMICS 2004-263 report.

[7] R. Keunings. Fundamentals of Computer Modeling for Polymer Processing, chapter Simulation of viscoelastic fluid flow, pages 402-470. Hanser, 1989.

[8] H.C. O¨ ttinger. Stochastic Processes in Polymeric Fluids. Springer, 1995.

[9] A. Peterlin. Hydrodynamics of macromolecules in a velocity field with longitudinal gradient. J. Polym. Sci. B, 4:287-291, 1966.

- Similar Research Results (8)
- Metrics No metrics available

- Download from

- Cite this publication