publication . Article . Preprint . 2018

Higher-$n$ triangular dilatonic black holes

Chiang-Mei Chen; Anton Zadora; Dmitri V. Gal'tsov; Dmitri V. Gal'tsov;
Open Access English
  • Published: 01 Apr 2018 Journal: Physics Letters B (issn: 0370-2693, Copyright policy)
  • Publisher: Elsevier
Abstract
Comment: Acknowledgement corrected
Subjects
arXiv: High Energy Physics::Theory
free text keywords: Physics, QC1-999, Nuclear and High Energy Physics, High Energy Physics - Theory, General Relativity and Quantum Cosmology, Mathematical physics, Quantization (signal processing), Black hole, Lie algebra, Horizon, Dyon, Coupling, Coupling constant, Dilaton
29 references, page 1 of 2

[1] G.W. Gibbons, Antigravitating black hole solitons with scalar hair in N=4 supergravity, Nucl. Phys. B 207 (1982) 337.

[2] G.W. Gibbons, K.I. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741.

[3] G.W. Gibbons, D.L. Wiltshire, Black holes in Kaluza-Klein theory, Ann. Phys. 167 (1986) 201, Erratum: Ann. Phys. 176 (1987) 393.

[4] D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379, arXiv:hep-th/9505038. [OpenAIRE]

[5] D. Garfinkle, G.T. Horowitz, A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140, Erratum: Phys. Rev. D 45 (1992) 3888. [OpenAIRE]

[6] S.J. Poletti, J. Twamley, D.L. Wiltshire, Dyonic dilaton black holes, Class. Quantum Gravity 12 (1995) 1753, Erratum: Class. Quantum Gravity 12 (1995) 2355, arXiv:hep-th/9502054. [OpenAIRE]

[7] D. Gal'tsov, M. Khramtsov, D. Orlov, Triangular extremal dilatonic dyons, Phys. Lett. B 743 (2015) 87, arXiv:1412.7709 [hep-th]. [OpenAIRE]

[8] K. Goldstein, V. Jejjala, S. Nampuri, Hot attractors, J. High Energy Phys. 1501 (2015) 075, arXiv:1410.3478 [hep-th].

[9] E.A. Davydov, Discreteness of dyonic dilaton black holes, arXiv:1711. 04198 [hep-th].

[10] M. Cvetic, D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118, arXiv:hep-th/ 9603100. [OpenAIRE]

[11] M. Cvetic, H. Lu, C.N. Pope, Entropy-product rules for charged rotating black holes, Phys. Rev. D 88 (2013) 044046, arXiv:1306.4522 [hep-th]. [OpenAIRE]

[12] H. Lu, W. Yang, SL(n,R)-Toda black holes, Class. Quantum Gravity 30 (2013) 235021, arXiv:1307.2305 [hep-th].

[13] H. Lu, C.N. Pope, K.W. Xu, Liouville and Toda solutions of M theory, Mod. Phys. Lett. A 11 (1996) 1785, arXiv:hep-th/9604058.

[14] V.D. Ivashchuk, S.W. Kim, Solutions with intersecting p-branes related to Toda chains, J. Math. Phys. 41 (2000) 444, arXiv:hep-th/9907019.

[15] V.D. Ivashchuk, V.N. Melnikov, Toda p-brane black holes and polynomials related to Lie algebras, Class. Quantum Gravity 17 (2000) 2073, arXiv:math-ph/ 0002048. [OpenAIRE]

29 references, page 1 of 2
Abstract
Comment: Acknowledgement corrected
Subjects
arXiv: High Energy Physics::Theory
free text keywords: Physics, QC1-999, Nuclear and High Energy Physics, High Energy Physics - Theory, General Relativity and Quantum Cosmology, Mathematical physics, Quantization (signal processing), Black hole, Lie algebra, Horizon, Dyon, Coupling, Coupling constant, Dilaton
29 references, page 1 of 2

[1] G.W. Gibbons, Antigravitating black hole solitons with scalar hair in N=4 supergravity, Nucl. Phys. B 207 (1982) 337.

[2] G.W. Gibbons, K.I. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741.

[3] G.W. Gibbons, D.L. Wiltshire, Black holes in Kaluza-Klein theory, Ann. Phys. 167 (1986) 201, Erratum: Ann. Phys. 176 (1987) 393.

[4] D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379, arXiv:hep-th/9505038. [OpenAIRE]

[5] D. Garfinkle, G.T. Horowitz, A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140, Erratum: Phys. Rev. D 45 (1992) 3888. [OpenAIRE]

[6] S.J. Poletti, J. Twamley, D.L. Wiltshire, Dyonic dilaton black holes, Class. Quantum Gravity 12 (1995) 1753, Erratum: Class. Quantum Gravity 12 (1995) 2355, arXiv:hep-th/9502054. [OpenAIRE]

[7] D. Gal'tsov, M. Khramtsov, D. Orlov, Triangular extremal dilatonic dyons, Phys. Lett. B 743 (2015) 87, arXiv:1412.7709 [hep-th]. [OpenAIRE]

[8] K. Goldstein, V. Jejjala, S. Nampuri, Hot attractors, J. High Energy Phys. 1501 (2015) 075, arXiv:1410.3478 [hep-th].

[9] E.A. Davydov, Discreteness of dyonic dilaton black holes, arXiv:1711. 04198 [hep-th].

[10] M. Cvetic, D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118, arXiv:hep-th/ 9603100. [OpenAIRE]

[11] M. Cvetic, H. Lu, C.N. Pope, Entropy-product rules for charged rotating black holes, Phys. Rev. D 88 (2013) 044046, arXiv:1306.4522 [hep-th]. [OpenAIRE]

[12] H. Lu, W. Yang, SL(n,R)-Toda black holes, Class. Quantum Gravity 30 (2013) 235021, arXiv:1307.2305 [hep-th].

[13] H. Lu, C.N. Pope, K.W. Xu, Liouville and Toda solutions of M theory, Mod. Phys. Lett. A 11 (1996) 1785, arXiv:hep-th/9604058.

[14] V.D. Ivashchuk, S.W. Kim, Solutions with intersecting p-branes related to Toda chains, J. Math. Phys. 41 (2000) 444, arXiv:hep-th/9907019.

[15] V.D. Ivashchuk, V.N. Melnikov, Toda p-brane black holes and polynomials related to Lie algebras, Class. Quantum Gravity 17 (2000) 2073, arXiv:math-ph/ 0002048. [OpenAIRE]

29 references, page 1 of 2
Any information missing or wrong?Report an Issue