The READEX formalism for automatic tuning for energy efficiency

Article English OPEN
Schuchart, Joseph; Gerndt, Michael; Kjeldsberg, Per Gunnar; Lysaght, Michael; Horák, David; Říha, Lubomír; Gocht, Andreas; Sourouri, Mohammed; Kumaraswamy, Madhura; Chowdhury, Anamika; Jahre, Magnus; Diethelm, Kai; Bouizi, Othman; Mian, Umbreen Sabir; Kružík, Jakub; Sojka, Radim; Beseda, Martin; Kannan, Venkatesh; Bendifallah, Zakaria; Hackenberg, Daniel; Nagel, Wolfgang E.;
(2017)
  • Publisher: Springer
  • Journal: issn: 0010-485X, eissn: 1436-5057
  • Related identifiers: doi: 10.1007/s00607-016-0532-7, doi: 10.13039/501100007601
  • Subject: dynamic tuning | Theoretical Computer Science | Computational Theory and Mathematics | Software | Computational Mathematics | Numerical Analysis | energy efficiency | dynamic behaviour | Computer Science Applications | automatic tuning | parallel computing

Energy efficiency is an important aspect of future exascale systems, mainly due to rising energy cost. Although High performance computing (HPC) applications are compute centric, they still exhibit varying computational characteristics in different regions of the progra... View more
  • References (19)
    19 references, page 1 of 2

    1. Bergman K, Borkar S, Campbell D, Carlson W, Dally W et al (2008) Exascale computing study: technology challenges in achieving exascale systems

    2. Gheorghita SV, Palkovic M, Hamers J, Vandecappelle A, Mamagkakis S, Basten T, Eeckhout L, Corporaal H, Catthoor F, Vandeputte F (2009) System-scenario-based design of dynamic embedded systems. ACM Trans Des Automation of Electronic Systems (TODAES)

    3. Filippopoulos I, Catthoor F, Kjeldsberg PG (2013) Exploration of energy efficient memory organisations for dynamic multimedia applications using system scenarios. Design Automation for Embedded Systems

    4. César E, Moreno A, Sorribes J, Luque E (2006) Modeling Master/Worker applications for automatic performance tuning. Parallel Computing

    5. Tiwari A, Chen C, Chame J, Hall M, Hollingsworth JK (2009) A Scalable Auto-Tuning Framework for Compiler Optimization. In: International Symposium on Parallel & Distributed Processing (IPDPS). IEEE

    6. Tiwari A, Hollingsworth J (2011) Online adaptive code generation and tuning. In: International Parallel Distributed Processing Symposium (IPDPS). IEEE

    7. ENabling technologies for a programmable many-CORE (ENCORE), last accessed June 15, 2016. [Online]. Available: http://cordis.europa.eu/project/rcn/94045_de.html

    8. Duran A, Ayguaé E, Badia RM, Labarta J, Martinell L, Martorell X, Planas J (2011) OmpSs: a proposal for programming heterogeneous multi-core architectures. Parallel Processing Letters

    9. Benkner S, Pllana S, Träf JL, Tsigas P, Dolinsky U, Augonnet C, Bachmayer B, Kessler C, Moloney D, Osipov V (2011) PEPPHER: Efficient and productive usage of hybrid computing systems,” IEEE Micro

    10. Silvano C, Agosta G, Cherubin S, Gadioli D, Palermo G, Bartolini A et al (2016) The ANTAREX Approach to Autotuning and Adaptivity for Energy Efficient HPC Systems. In: Proceedings of the ACM International Conference on Computing Frontiers

  • Similar Research Results (6)
  • Metrics
    2
    views in OpenAIRE
    0
    views in local repository
    0
    downloads in local repository
Share - Bookmark