Mahonian pairs

Article, Preprint English OPEN
Sagan, Bruce E.; Savage, Carla D.;
  • Publisher: Elsevier BV
  • Journal: Journal of Combinatorial Theory, Series A,volume 119,issue 3,pages526-545 (issn: 0097-3165)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/j.jcta.2011.11.003
  • Subject: Mathematics - Combinatorics | Theoretical Computer Science | Computational Theory and Mathematics | 05A05 (Primary), 05A10 (Secondary), 05A15, 05A19, 05A30, 11P81 | Discrete Mathematics and Combinatorics
    arxiv: Mathematics::Combinatorics

We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distrib... View more
  • References (38)
    38 references, page 1 of 4

    [1] Michael Aissen. Variations on a theme of Po´lya. In Second International Conference on Combinatorial Mathematics (New York, 1978), volume 319 of Ann. New York Acad. Sci., pages 1-6. New York Acad. Sci., New York, 1979.

    [2] G. E. Andrews. Sieves for theorems of Euler, Ramanujan, and Rogers. In The Theory of Arithmetic Functions, volume 251 of Lecture Notes in Mathematics, pages 1 -20. Springer-Verlag, 1971.

    [3] George E. Andrews. On the difference of successive Gaussian polynomials. J. Statist. Plann. Inference, 34(1):19-22, 1993.

    [4] George E. Andrews. The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.

    [5] Tiffany M. Barnes and Carla D. Savage. A recurrence for counting graphical partitions. Electron. J. Combin., 2:Research Paper 11, approx. 10 pp. (electronic), 1995.

    [6] Arthur T. Benjamin and Sean S. Plott. A combinatorial approach to Fibonomial coefficients. Fibonacci Quart., 46/47(1):7-9, 2008/09.

    [7] Arthur T. Benjamin and Sean S. Plott. A combinatorial approach to Fibonomial coefficients: errata. Fibonacci Quart., 48(3):276, 2010.

    [8] Arthur T. Benjamin and Jennifer J. Quinn. Proofs that really count, volume 27 of The Dolciani Mathematical Expositions. Mathematical Association of America, Washington, DC, 2003. The art of combinatorial proof.

    [9] Anders Bj¨orner and Michelle L. Wachs. q-hook length formulas for forests. J. Combin. Theory Ser. A, 52(2):165-187, 1989.

    [10] Anders Bj¨orner and Michelle L. Wachs. Permutation statistics and linear extensions of posets. J. Combin. Theory Ser. A, 58(1):85-114, 1991.

  • Related Organizations (3)
  • Metrics
Share - Bookmark