Enumeration of connected Catalan objects by type

Article, Preprint English OPEN
Rhoades, Brendon;
(2011)

Noncrossing set partitions, nonnesting set partitions, Dyck paths, and rooted plane trees are four classes of Catalan objects which carry a notion of type. There exists a product formula which enumerates these objects according to type. We define a notion of `connectivi... View more
  • References (14)
    14 references, page 1 of 2

    [1] D. Armstrong and S.-P. Eu. Nonhomogeneous parking functions and noncrossing partitions. Electron. J. Combin., 15, 1 (2008).

    [2] D. Armstrong and B. Rhoades. The Shi arrangement and the Ish arrangement. In progress, 2010.

    [3] C. A. Athanasiadis. On noncrossing and nonnesting partitions for classical reflection groups. Elecron. J. Combin., 5 (1998). R42.

    [4] N. Dershowitz and S. Zaks. Ordered trees and non-crossing partitions. Discrete Math., 62 (1986).

    [5] N. Dershowitz and S. Zaks. The cycle lemma and some applications. Europ. J. Combin., 11 (1990) pp. 35-40.

    [6] A. Dvoretzky and T. Motzkin. A problem of arrangements. Duke Math. J., 14 (1947) pp. 305-313.

    [7] C. Krattenthaler (2010). Personal communication.

    [8] G. Kreweras. Sur les partitions non crois´ees d'un cycle. Discrete Math., 1, 4 (1972) pp. 333-350.

    [9] G. Raney. Functional composition patterns and power series inversion. Trans. Amer. Math. Soc., 94 (1960) pp. 441-451.

    [10] R. Stanley. Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997).

  • Metrics
Share - Bookmark