Leveraging Unlabeled Data for Emotion Recognition With Enhanced Collaborative Semi-Supervised Learning

Article English OPEN
Zhang, Zixing; Han, Jing; Deng, Jun; Xu, Xinzhou; Ringeval, Fabien; Schuller, Bjorn;
(2018)
  • Publisher: IEEE
  • Journal: IEEE Access,volume 6,pages22,196-22,209 (eissn: 2169-3536)
  • Related identifiers: doi: 10.1109/access.2018.2821192
  • Subject: audiovisual emotion recognition | [ INFO.INFO-LG ] Computer Science [cs]/Machine Learning [cs.LG] | collaborative learning | enhanced semi-supervised learning
    • ddc: ddc:000

International audience; One of the major obstacles that has to be faced when applying automatic emotion recognition to realistic human-machine interaction systems is the scarcity of labelled data for training a robust model. Motivated by this concern, this article seeks... View more
  • References (57)
    57 references, page 1 of 6

    [1] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, and J. G. Taylor, “Emotion recognition in human-computer interaction,” IEEE Signal Processing Magazine, vol. 18, no. 1, pp. 32- 80, Jan. 2001.

    [2] M. Chen, P. Zhou, and G. Fortino, “Emotion communication system,” IEEE Access, vol. 5, pp. 326-337, Dec. 2016.

    [3] M. S. Hossain and G. Muhammad, “An emotion recognition system for mobile applications,” IEEE Access, vol. 5, pp. 2281-2287, Feb. 2017.

    [4] B. G. Lee, T. W. Chong, B. L. Lee, H. J. Park, Y. N. Kim, and B. Kim, “Wearable mobile-based emotional response-monitoring system for drivers,” IEEE Transactions on Human-Machine Systems, vol. 47, no. 5, pp. 636-649, Oct. 2017.

    [5] Y. Kim, T. Soyata, and R. F. Behnagh, “Towards emotionally-aware AI smart classroom: Current issues and directions for engineering and education,” IEEE Access, vol. PP, no. 99, pp. 1-1, Jan. 2018.

    [6] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intelligent Systems, vol. 24, no. 2, pp. 8-12, Mar. 2009.

    [7] J. Deng, S. Frhholz, Z. Zhang, and B. Schuller, “Recognizing emotions from whispered speech based on acoustic feature transfer learning,” IEEE Access, vol. 5, pp. 5235-5246, Mar. 2017.

    [8] Z. Zhang, N. Cummins, and B. Schuller, “Advanced data exploitation for speech analysis: An overview,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 107-129, July 2017.

    [9] S. Hantke, T. Appel, F. Eyben, and B. Schuller, “iHEARu-PLAY: Introducing a game for crowdsourced data collection for affective computing,” in Proc. International Conference on Affective Computing and Intelligent Interaction (ACII), Xi'an, China, 2015, pp. 891-897.

    [10] B. Wu, E. Zhong, D. H. Hu, A. Horner, and Q. Yang, “SMART: Semisupervised music emotion recognition with social tagging,” in Proc. SIAM International Conference on Data Mining (SDM), Austin, TX, 2013, pp. 279-287.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark