publication . Article . Preprint . 2017

Information-theoretic equilibrium and observable thermalization

Anzà, F; Vedral, V;
Open Access English
  • Published: 07 Mar 2017 Journal: Scientific Reports, volume 7, issue 1 (issn: 2045-2322, eissn: 2045-2322, Copyright policy)
  • Publisher: Nature Publishing Group
Abstract
To understand under which conditions thermodynamics emerges from the microscopic dynamics is the ultimate goal of statistical mechanics. Despite the fact that the theory is more than 100 years old, we are still discussing its foundations and its regime of applicability. A point of crucial importance is the definition of the notion of thermal equilibrium, which is given as the state that maximises the von Neumann entropy. Here we argue that it is necessary to propose a new way of describing thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise the notion of thermal equilibrium, for a given observable, via...
Subjects
free text keywords: Article, Quantum Physics
57 references, page 1 of 4

Greiner W.Neise L. & Stocker H. Thermodynamics and Statistical Mechanics. New York (Springer, 1995).

Uffink J.Compendium of the foundations of classical statistical physics. Chapter for Handbook for Philosophy of Physics. Butterfield J. & Earman J. (eds) (2006).

Jaynes E. T.Information theory and statistical mechanics. Physical Review Series II 106(4), 620–630 (1957).

Jaynes E. T.Information theory and statistical mechanics II. Physical Review Series II 108(2), 171–190 (1957).

Eisert J., Friesdorf M. & Gogolin C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124D130 (2015). [OpenAIRE]

Popescu S., Short A. & Winter A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754–758 (2006).

Gemmer J., Michel M. & Mahler G. Quantum Thermodynamics Lecture Notes in Physi cs, Heidelberg (Springer, 2009).

Goldstein S., Lebowitz J. L., Tumulka R. & Zanghi N. Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006).16486907 [PubMed]

Goldstein S., Lebowitz J. L., Tumulka R. & Zanghi N. Long-time behavior of macroscopic quantum systems. Eur. Phys. J. H 35, 173 (2010). [OpenAIRE]

Gemmer J., Otte A. & Mahler G. Quantum approach to the second law of thermodynamics. Phys. Rev. Lett. 86, 1927 (2001).11289822 [OpenAIRE] [PubMed]

Rigol M.Dunjko V., Yuovsky V. & Olshanii M. Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons. Phys. Rev. Lett. 98, 050405 (2007).17358832 [PubMed]

Brandino G. P., Caux J.-S. & Konik R. M. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases. Phys. Rev. X 5, 041043 (2015). [OpenAIRE]

Polkovnikov A., Sengupta K. & Vengalattore M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011).

Yukalov V. I.Equilibration and thermalization in finite quantum systems. Laser Phys. Lett.1, 435 (2004).

D’Alessio L., Kafri Y., Polkovnikov A. & Rigol M. From Quantum Chaos and Eigenstate Thermalization to Statistical Mechanics and Thermodynamics. Adv. Phys. 65, 239 (2016). [OpenAIRE]

57 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2017

Information-theoretic equilibrium and observable thermalization

Anzà, F; Vedral, V;