On homaloidal polynomials

Preprint, Other literature type English OPEN
Bruno, Andrea;
(2004)

We classify homogeneous polynomials which split as powers of linear forms and whose polar map is birational.
  • References (8)

    [Di] Dimca,A., On polar Cremona transformations, An. Stiinct. Univ. Ovidius Constancta Ser. Mat. 9 n.1 (2001), 47-53.

    [DiPa] Dimca,A.; Papadima,S., Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. of Math. (2) no. 2 vol 158 (2003), 473-507.

    [Do] Dolgachev,I., Polar Cremona transformations, Michigan Math. J.(volume dedicated to William Fulton) 48 (2000), 191-202.

    [EKP] Etingof,P.;Kazhdan,D.;Polishchuk, A., When is the Fourier transform of an elementary function elementary?, Selecta Math (N.S.) 8, n.1 (2002), 27-66.

    [KiSa] Kimura,T.;Sato,M., A classification of prehomogeneous vector spaces and their relative invariants, Nagoya Math. Journal 65 (1977), 1-155.

    [KS] Kraft,H;Schwarz,G., Rational covariants of reductive groups and homaloidal polynomials, Mathematical Research Letters 8 (2001), 641-649.

    [R] Russo,F., Tangents and Secants of algebraic varieties. Notes of a course 24th Coloquio Brasileiro de Matematica, IMPA (2003). Andrea Bruno, Universita' degli Studi Roma Tre, Dipartimento di Matematica, Largo S. L: Murialdo, 1, 00146 Roma (Italia)

    E-mail address: bruno at mat.uniroma3.it

  • Similar Research Results (2)
  • Metrics
Share - Bookmark