Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing

Article English OPEN
Villapún, VM ; Esat, F ; Bull, S ; Dover, LG ; González, S (2017)
  • Publisher: MDPI
  • Journal: Materials, volume 10, issue 5 (issn: 1996-1944, eissn: 1996-1944)
  • Related identifiers: pmc: PMC5459050, doi: 10.3390/ma10050506
  • Subject: QC120-168.85 | F200 | Engineering (General). Civil engineering (General) | Technology | Article | antimicrobial behaviour | TA1-2040 | T | metallic glass composite | Electrical engineering. Electronics. Nuclear engineering | TK1-9971 | scratch hardness | Microscopy | tribological properties | scratch test | QH201-278.5 | Descriptive and experimental mechanics

The influence of cooling rate on the wear and antimicrobial performance of a Cu52Z41Al7 (at. %) bulk metallic glass (BMG) composite was studied and the results compared to those of the annealed sample (850 °C for 48 h) and to pure copper. The aim of this basic research is to explore the potential use of the material in preventing the spread of infections. The cooling rate is controlled by changing the mould diameter (2 mm and 3 mm) upon suction casting and controlling the mould temperature (chiller on and off). For the highest cooling rate conditions CuZr is formed but CuZr2 starts to crystallise as the cooling rate decreases, resulting in an increase in the wear resistance and brittleness, as measured by scratch tests. A decrease in the cooling rate also increases the antimicrobial performance, as shown by different methodologies (European, American and Japanese standards). Annealing leads to the formation of new intermetallic phases (Cu10Zr7 and Cu2ZrAl) resulting in maximum scratch hardness and antimicrobial performance. However, the annealed sample corrodes during the antimicrobial tests (within 1 h of contact with broth). The antibacterial activity of copper was proved to be higher than that of any of the other materials tested but it exhibits very poor wear properties. Cu-rich BMG composites with optimised microstructure would be preferable for some applications where the durability requirements are higher than the antimicrobial needs.
  • References (55)
    55 references, page 1 of 6

    1. Sorci, G.; Cornet, S.; Faivre, B. Immunity and the emergence of virulent pathogens. Infect. Genet. Evol. 2013, 16, 441-446. [CrossRef] [PubMed]

    2. Point prevalence survey of healthcare associated infections and antimicrobial use in european acute care hospitals. In European Centre for Disease Prevention and Control; ECDC: Stockholm, Sweden, 2013.

    3. Trubiano, J.A.; Padiglione, A.A. Nosocomial infections in the intensive care unit. Anaesth. Intens. Care Med. 2015, 16, 598-602. [CrossRef]

    4. Sadatsafavi, H.; Niknejad, B.; Zadeh, R.; Sadatsafavi, M. Do cost savings from reductions in nosocomial infections justify additional costs of single-bed romos in intensive care units? A simulation case study. J. Crit. Care 2015, 31, 194-200. [CrossRef] [PubMed]

    5. Lax, S.; Gilbert, J.A. Hospital associated microbiota and implications for nosocomial infections. Cell Press 2015, 21, 427-432. [CrossRef] [PubMed]

    6. Stone, P.W. Economic burden of healthcare-associated infections: An american perspective. Expert Rev. Pharmacoecon. Outcomes Res. 2009, 9, 417-422. [CrossRef] [PubMed]

    7. Fierer, N.; Hamady, M.; Lauber, C.L.; Knight, R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl. Acad. Sci. 2008, 105, 17994-17999. [CrossRef] [PubMed]

    8. Judah, G.; Donachie, P.; Cobb, E.; Schmidt, W.; Holland, M.; Curtis, V. Dirty hands: Bacteria of faecal origin on commuters' hands. Epidemiol. Infect. 2010, 138, 409-414. [CrossRef] [PubMed]

    9. Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect. Dis. 2010, 10, 597-602. [CrossRef]

    10. Rutala, W.A.; Weber, D.J. Infection control: The role of disinfection and sterilization. J. Hosp. Infect. 1999, 43, 43-55. [CrossRef]

  • Related Research Results (1)
  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Northumbria Research Link - IRUS-UK 0 52
    White Rose Research Online - IRUS-UK 0 5
Share - Bookmark