## Infinite Bar-Joint Frameworks, Crystals and Operator Theory

*Owen, J. C.*;

*power, S. C.*;

- Subject: 46T20, 52C75 | Mathematics - Combinatorics | Mathematics - Functional Analysis | Mathematics - Metric Geometry

- References (36)
[1] L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc., 245 (1978), 279-289.

[2] C.S. Borcea and I. Streinu, Periodic frameworks and flexibility, Proc. R. Soc. A, doi:10.1098/rspa.2009.0676.

[3] A. B¨ottcher, B. Silbermann, Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990.

[4] R.Connelly, P.W.Fowler, S.D.Guest, B.Schulze, W.J.Whiteley, ”When is a pinjointed framework isostatic?”, International Journal of Solids and Structures, 46 (2009), 762 - 773.

[5] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms, Springer-Verlag, 1992.

[6] M. V. Chubynsky and M. F. Thorpe, Algorithms for three-dimensional rigidity analysis and a first-order percolation transition, Physical Review E 76, 2007.

[7] A. Donev and S. Torquato, Energy-efficient actuation in infinite lattice structures, J. Mech Phys. Solids, 51 (2003) 1459-1475.

[8] M. T. Dove et al, Floppy Modes in Crystalline and Amorphous Silicates; in Rigidity Theory and Applications, Edited by M. F. Thorpe and P. M. Duxbury, Kluwer Academic/Plenum Publishers, New York (1999).

[9] P.W. Fowler and S.D. Guest, A symmetry extension of Maxwell's rule for rigidity of frames, International Journal of Solids and Structures 37 (2000) 1793 - 1804.

[10] M. G. Frost and C. Storey, Equivalence of a matrix over R[s, z] with its Smith form, Int. J. Control, 28 (1978), 665-671.

- Metrics 0views in OpenAIRE0views in local repository11downloads in local repository
The information is available from the following content providers:

From Number Of Views Number Of Downloads Lancaster EPrints - IRUS-UK 0 11

- Download from

- Cite this publication