Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid

Conference object English OPEN
Cury, Claire; Glaunès, Joan Alexis; Chupin, Marie; Colliot, Olivier;
(2014)
  • Publisher: HAL CCSD
  • Subject: [ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging | [SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
    acm: ComputingMethodologies_COMPUTERGRAPHICS | ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION

International audience; A common approach for the analysis of anatomical variability relies on the estimation of a representative template of the population, followed by the study of this population based on the parameters of the deformations going from the template to ... View more
  • References (12)
    12 references, page 1 of 2

    [1] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2):139-157, 2005.

    [2] M. Chupin, A. Hammers, R. S. N. Liu, O. Colliot, J. Burdett, E. Bardinet, J. S. Duncan, L. Garnero, and L. Lemieux. Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage, 46(3): 749-761, 2009.

    [3] C. Cury, J. A. Glaunés, and O. Colliot. Template Estimation for Large Database: A Diffeomorphic Iterative Centroid Method Using Currents. In Frank Nielsen and Frédéric Barbaresco, editors, GSI, volume 8085 of LNCS, pages 103-111. Springer, 2013.

    [4] S. Durrleman, X. Pennec, A. Trouvé, N. Ayache, et al. A forward model to build unbiased atlases from curves and surfaces. In 2nd Medical Image Computing and Computer Assisted Intervention. Workshop on M.F.C.A., pages 68-79, 2008.

    [5] S. Durrleman, M. Prastawa, J. R. Korenberg, S. Joshi, A. Trouvé, and G. Gerig. Topology Preserving Atlas Construction from Shape Data without Correspondence Using Sparse Parameters. In MICCAI 2012, LNCS, pages 223-230. Springer, 2012.

    [6] M. Emery and G. Mokobodzki. Sur le barycentre d'une probabilité dans une variété. In Séminaire de probabilités, volume 25, pages 220-233. Springer, 1991.

    [7] J. A. Glaunès and S. Joshi. Template estimation from unlabeled point set data and surfaces for Computational Anatomy. In Proc. of the International Workshop on the MFCA-2006, pages 29-39, 2006.

    [8] U. Grenander and M. I. Miller. Computational anatomy: An emerging discipline. Quarterly of applied mathematics, 56(4):617-694, 1998.

    [9] J. Ma, M. I. Miller, A. Trouvé, and L. Younes. Bayesian template estimation in computational anatomy. NeuroImage, 42(1):252-261, 2008.

    [10] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component analysis. In Artificial Neural Networks-ICANN'97, pages 583-588. Springer, 1997.

  • Metrics
Share - Bookmark