Symbolic computation with finite biquandles

Article, Preprint English OPEN
Creel, Conrad ; Nelson, Sam (2006)
  • Publisher: Elsevier BV
  • Journal: Journal of Symbolic Computation, volume 42, issue 10, pages 992-1,000 (issn: 0747-7171)
  • Related identifiers: doi: 10.1016/j.jsc.2007.08.006
  • Subject: Computational Mathematics | Algebra and Number Theory | Mathematics - Quantum Algebra | Mathematics - Geometric Topology | 57M27, 57M25, 57-04
    arxiv: Mathematics::Geometric Topology | Mathematics::Quantum Algebra | Nonlinear Sciences::Exactly Solvable and Integrable Systems

A method of computing a basis for the second Yang-Baxter cohomology of a finite biquandle with coefficients in Q and Z_p from a matrix presentation of the finite biquandle is described. We also describe a method for computing the Yang-Baxter cocycle invariants of an oriented knot or link represented as a signed Gauss code. We provide a URL for our Maple implementations of these algorithms.
  • References (14)
    14 references, page 1 of 2

    [1] S. Budden and R. Fenn. The equation [B, (A − 1)(A, B)] = 0 and virtual knots and links. Fundam. Math. 184 (2004) 19-29.

    [2] J. S. Carter, M. Elhamdadi, M. Saito. Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles. Fund. Math. 184 (2004) 31-54.

    [3] J. S. Carter, D. Jelsovsky, S. Kamada, L Langford and M. Saito. Quandle cohomology and state-sum invariants of knotted curves and surfaces. Trans. Am. Math. Soc. 355 (2003) 3947- 3989.

    [4] J. S. Carter, S. Kamada, M. Saito. Stable Equivalence of Knots on Surfaces and Virtual Knot Cobordisms, J. Knot Theory Ramifications 11 (2002) 311-322.

    [5] C. H. Dowker and M. B. Thistlethwaite. On the classification of knots. C. R. Math. Acad. Sci., Soc. R. Can. 4 (1982) 129-131.

    [6] R. Fenn, M. Jordan-Santana, and L. Kauffman. Biquandles and virtual links. Topology Appl. 145 (2004) 157-175.

    [7] R. Henderson, T. Macedo and S. Nelson. Symbolic Computation with finite quandles. J. Symbolic Comput. 41 (2006) 811-817.

    [8] L. H. Kauffman. Virtual knot theory. European J. Combin. 20 (1999) 663-690.

    [9] N. Kamada and S. Kamada. Abstract link diagrams and virtual knots. J. Knot Theory Ramifications 9 (2000) 93-106.

    [10] L. H. Kauffman and V. O. Manturov. Virtual biquandles. Fund. Math. 188 (2005) 103-146.

  • Metrics
    No metrics available
Share - Bookmark