publication . Article . 2015

Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders

Celestin, Sébastien; Xu, Wei; Pasko, Victor P.;
Open Access English
  • Published: 01 Jan 2015
  • Publisher: American Geophysical Union/Wiley
Abstract
International audience; In this paper, we model the production and acceleration of thermal runaway electrons during negative corona flash stages of stepping lightning leaders and the corresponding terrestrial gamma ray flashes (TGFs) or negative cloud-to-ground (−CG) lightning-produced X-ray bursts in a unified fashion. We show how the source photon spectrum and fluence depend on the potential drop formed in the lightning leader tip region during corona flash and how the X-ray burst spectrum progressively converges toward typical TGF spectrum as the potential drop increases. Additionally, we show that the number of streamers produced in a negative corona flash, ...
Subjects
arxiv: Astrophysics::High Energy Astrophysical Phenomena
free text keywords: [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph], [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
Related Organizations
Funded by
NSF| Energetic Radiation from Lightning Leaders: Effects and Origins
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1106779
  • Funding stream: Directorate for Geosciences | Division of Atmospheric and Geospace Sciences

Babich, L. P., E. N. Donskoy, R. I. Il'Kaev, I. M. Kutsyk, and R. A. Roussel-Dupre (2004), Fundamental parameters of a relativistic runaway electron avalanche in air, Plasma Phys. Rep., 30, 616-624.

Balanis, C. A. (1989), Advanced Engineering Electromagnetics, John Wiley, New York.

Bazelyan, E. M., and Y. P. Raizer (2000), Lightning Physics and Lightning Protection, IOP Publishing Ltd, Bristol, U. K., and Philadelphia, Pa.

Briggs, M. S., et al. (2010), First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor, J. Geophys. Res., 115, A07323, doi:10.1029/2009JA015242.

Shao, X.-M., T. Hamlin, and D. M. Smith (2010), A closer examination of terrestrial gamma-ray flash-related lightning processes, J. Geophys. Res., 115, A00E30, doi:10.1029/2009JA014835.

Smith, D. M., L. I. Lopez, R. P. Lin, and C. P. Barrington-Leigh (2005), Terrestrial gamma-ray flashes observed up to 20 MeV, Science, 307, 1085-1088.

Smith, D. M., et al. (2011), A terrestrial gamma ray flash observed from an aircraft, J. Geophys. Res., 116, D20124, doi:10.1029/2011JD016252.

Stanley, M. A., X.-M. Shao, D. M. Smith, L. I. Lopez, M. B. Pongratz, J. D. Harlin, M. Stock, and A. Regan (2006), A link between terrestrial gamma-ray flashes and intracloud lightning discharges, Geophys. Res. Lett., 33, L06803, doi:10.1029/2005GL025537. [OpenAIRE]

Tavani, M., et al. (2011), Terrestrial gamma-ray flashes as powerful particle accelerators, Phys. Rev. Lett., 106, 18501, doi:10.1103/ PhysRevLett.106.018501. [OpenAIRE]

Wilson, C. T. R. (1925), The acceleration of -particles in strong electric fields such as those of thunderclouds, Proc. of the Cam. Phil. Soc., 22, 534, doi:10.1017/S0305004100003236. [OpenAIRE]

Xu, W., S. Celestin, and V. P. Pasko (2012), Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders, Geophys. Res. Lett., 39, L08801, doi:10.1029/2012GL051351.

Xu, W., S. Celestin, and V. P. Pasko (2014), Modeling of X-ray emissions produced by stepping lightning leaders, Geophys. Res. Lett., 41, 7406-7412, doi:10.1002/2014GL061163. [OpenAIRE]

Xu, W., S. Celestin, and V. P. Pasko (2015), Optical emissions associated with terrestrial gamma ray flashes, J. Geophys. Res., 42, 1355-1370, doi:10.1002/2014JA020425. [OpenAIRE]

Abstract
International audience; In this paper, we model the production and acceleration of thermal runaway electrons during negative corona flash stages of stepping lightning leaders and the corresponding terrestrial gamma ray flashes (TGFs) or negative cloud-to-ground (−CG) lightning-produced X-ray bursts in a unified fashion. We show how the source photon spectrum and fluence depend on the potential drop formed in the lightning leader tip region during corona flash and how the X-ray burst spectrum progressively converges toward typical TGF spectrum as the potential drop increases. Additionally, we show that the number of streamers produced in a negative corona flash, ...
Subjects
arxiv: Astrophysics::High Energy Astrophysical Phenomena
free text keywords: [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph], [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
Related Organizations
Funded by
NSF| Energetic Radiation from Lightning Leaders: Effects and Origins
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1106779
  • Funding stream: Directorate for Geosciences | Division of Atmospheric and Geospace Sciences

Babich, L. P., E. N. Donskoy, R. I. Il'Kaev, I. M. Kutsyk, and R. A. Roussel-Dupre (2004), Fundamental parameters of a relativistic runaway electron avalanche in air, Plasma Phys. Rep., 30, 616-624.

Balanis, C. A. (1989), Advanced Engineering Electromagnetics, John Wiley, New York.

Bazelyan, E. M., and Y. P. Raizer (2000), Lightning Physics and Lightning Protection, IOP Publishing Ltd, Bristol, U. K., and Philadelphia, Pa.

Briggs, M. S., et al. (2010), First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor, J. Geophys. Res., 115, A07323, doi:10.1029/2009JA015242.

Shao, X.-M., T. Hamlin, and D. M. Smith (2010), A closer examination of terrestrial gamma-ray flash-related lightning processes, J. Geophys. Res., 115, A00E30, doi:10.1029/2009JA014835.

Smith, D. M., L. I. Lopez, R. P. Lin, and C. P. Barrington-Leigh (2005), Terrestrial gamma-ray flashes observed up to 20 MeV, Science, 307, 1085-1088.

Smith, D. M., et al. (2011), A terrestrial gamma ray flash observed from an aircraft, J. Geophys. Res., 116, D20124, doi:10.1029/2011JD016252.

Stanley, M. A., X.-M. Shao, D. M. Smith, L. I. Lopez, M. B. Pongratz, J. D. Harlin, M. Stock, and A. Regan (2006), A link between terrestrial gamma-ray flashes and intracloud lightning discharges, Geophys. Res. Lett., 33, L06803, doi:10.1029/2005GL025537. [OpenAIRE]

Tavani, M., et al. (2011), Terrestrial gamma-ray flashes as powerful particle accelerators, Phys. Rev. Lett., 106, 18501, doi:10.1103/ PhysRevLett.106.018501. [OpenAIRE]

Wilson, C. T. R. (1925), The acceleration of -particles in strong electric fields such as those of thunderclouds, Proc. of the Cam. Phil. Soc., 22, 534, doi:10.1017/S0305004100003236. [OpenAIRE]

Xu, W., S. Celestin, and V. P. Pasko (2012), Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders, Geophys. Res. Lett., 39, L08801, doi:10.1029/2012GL051351.

Xu, W., S. Celestin, and V. P. Pasko (2014), Modeling of X-ray emissions produced by stepping lightning leaders, Geophys. Res. Lett., 41, 7406-7412, doi:10.1002/2014GL061163. [OpenAIRE]

Xu, W., S. Celestin, and V. P. Pasko (2015), Optical emissions associated with terrestrial gamma ray flashes, J. Geophys. Res., 42, 1355-1370, doi:10.1002/2014JA020425. [OpenAIRE]

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2015

Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders

Celestin, Sébastien; Xu, Wei; Pasko, Victor P.;