Search for dark matter at s=13TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector
- Published: 14 Jun 2017
- Publisher: Ludwig-Maximilians-Universität München
- McGill University Canada
- Osaka University Japan
- University of California Santa Cruz United States
1. OPAL Collaboration, G. Abbiendi et al., Photonic events with missing energy in e+e− collisions at √s = 189 GeV. Eur. Phys. J. C 18, 253 (2000). doi:10.1007/s100520000522. arXiv:hep-ex/0005002
2. L3 Collaboration, P. Achard et al., Single photon and multiphoton events with missing energy in e+e− collisions at LEP. Phys. Lett. B 587, 16 (2004). doi:10.1016/j.physletb.2004.01.010. arXiv:hep-ex/0402002
3. DELPHI Collaboration, J. Abdallah et al., Photon events with missing energy in e+e− collisions at √s = 130 GeV to 209 GeV. Eur. Phys. J. C 38, 395 (2005). doi:10.1140/epjc/s2004-02051-8. arXiv:hep-ex/0406019
4. CDF Collaboration, T. Aaltonen et al., Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in p p¯ collisions at √s = 1.96 TeV. Phys. Rev. Lett. 101, 181602 (2008). doi:10.1103/PhysRevLett. 101.181602. arXiv:0807.3132 [hep-ex]
5. D0 Collaboration, V.M. Abazov et al., Search for large extra dimensions via single photon plus missing energy final states at √s = 1.96 TeV. Phys. Rev. Lett. 101, 011601 (2008). doi:10. 1103/PhysRevLett.101.011601. arXiv:0803.2137 [hep-ex]
6. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279 (2005). doi:10.1016/ j.physrep.2004.08.031. arXiv:hep-ph/0404175
7. J. Goodman et al., Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010). doi:10.1103/PhysRevD.82.116010. arXiv:1008.1783 [hep-ph]
8. J. Abdallah et al., Simplified models for dark matter searches at the LHC. Phys. Dark Univ. 9-10, 8 (2015). doi:10.1016/j.dark.2015. 08.001. arXiv:1506.03116 [hep-ph]
9. O. Buchmueller, M.J. Dolan, S.A. Malik, C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators. JHEP 01, 037 (2015). doi:10.1007/ JHEP01(2015)037. arXiv:1407.8257 [hep-ph] [OpenAIRE]
10. D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum (2015). arXiv:1507.00966 [hep-ex] [OpenAIRE]
11. G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Phys. Lett. B 728, 412 (2014). doi:10.1016/j.physletb.2013.11.069. arXiv:1307.2253 [hep-ph] [OpenAIRE]
12. A. Crivellin, U. Haisch, A. Hibbs, LHC constraints on gauge boson couplings to dark matter. Phys. Rev. D 91, 074028 (2015). doi:10. 1103/PhysRevD.91.074028. arXiv:1501.00907 [hep-hp] [OpenAIRE]
13. E. Eichten, K. Lane, Low-scale technicolor at the Tevatron and LHC. Phys. Lett. B 669, 235 (2008). doi:10.1016/j.physletb.2008. 09.047. arXiv:0706.2339 [hep-ph]
14. I. Low, J. Lykken, G. Shaughnessy, Singlet scalars as Higgs imposters at the large hadron collider. Phys. Rev. D 84, 035027 (2011). doi:10.1103/PhysRevD.84.035027. arXiv:1105.4587 [hep-ph]
15. ATLAS Collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at √s = 7 TeV with the ATLAS detector. Phys. Rev. Lett. 110, 011802 (2013). doi:10.1103/ PhysRevLett.110.011802. arXiv:1209.4625 [hep-ex]