GammaGompertz life expectancy at birth
 Publisher: Max Planck Institute for Demographic Research
 Journal: Demographic Research, volume 28, issue 9 February, pages 259270 (issn: 14359871)

Subject: gammaGompertz frailty model, hypergeometric function, life expectancy, life expectancy at birth  HB8483697  life expectancy at birth  gammaGompertz frailty model  approximations  Demography. Population. Vital events  hypergeometric function

jel: jel:J1  jel:Z0


References
(10)
Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions. Washington, DC: US Government Printing Office.
Bailey, W.N. (1935). Generalised Hypergeometric Series. Cambridge: University Press.
Beard, R.E. (1959). Note on some mathematical mortality models. In: Woolstenholme, G. and O'Connor, M. (eds.). The Lifespan of Animals. Little, Brown and Company: 302311.
Finkelstein, M.S. and Esaulova, V. (2006). Asymptotic behavior of a general class of mixture failure rates. Advances in Applied Probability 38(1): 244262. doi:10.1239/aap/1143936149.
HMD (2012). The human mortality database. http://www.mortality.org.
Keyfitz, N. and Caswell, H. (2005). Applied Mathematical Demography. New York: Springer, 3rd ed.
Lebedev, N.N. (1965). Special Functions and Their Applications. Englewood Cliffs, N.J.: PrenticeHall.
MathWorld (2012). Wolfram http://mathworld.wolfram.org.
Vaupel, J.W. (2008). Supercentenarians and the theory of heterogeneity. [unpublished manuscript]. Rostock: Max Planck Institute for Demographic Research. Johann Süßmilch Lecture Series in 2008/2009.
Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439454. doi:10.2307/2061224.
 Similar Research Results (3)

Metrics
No metrics available

 Download from



Cite this publication