publication . Article . Research . Other literature type . Preprint . 2017

Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data.

Guillaume Plante; j.a.m. lopes; Rafael Lang; Patrick de Perio; Walter Fulgione; Jelle Aalbers; Manfred Lindner; Marcello MESSINA; Christopher Tunnell; Michelle Galloway; ...
Open Access
  • Published: 06 Mar 2017 Journal: Physical Review Letters, volume 118 (issn: 0031-9007, eissn: 1079-7114, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected ann...
Subjects
free text keywords: Physics Institute, 530 Physics, [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], Physics and Astronomy (all) XENON DARK MATTER MODULATION TPC, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics, High Energy Physics - Experiment, Physics - Instrumentation and Detectors
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
25 references, page 1 of 2

‡ql2265@columbia.edu.

∥xenon@lngs.infn.it. [1] R. Bernabei et al. (DAMA/LIBRA Collaborations), Eur.

Phys. J. C 73, 2648 (2013). [2] K. Freese, M. Lisanti, and C. Savage, Rev. Mod. Phys. 85,

1561 (2013). [3] A. K. Drukier, K. Freese, and D. N. Spergel, Phys. Rev. D

33, 3495 (1986). [4] R. Agnese et al. (SuperCDMS Collaboration), Phys. Rev.

Lett. 112, 241302 (2014). [5] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett.

118, 021303 (2017). [6] A. Tan et al. (PandaX-II Collaboration), Phys. Rev. Lett.

117, 121303 (2016). [7] E. Aprile et al. (XENON Collaboration), Phys. Rev. D 94,

122001 (2016). [8] C. Amole et al. (PICO Collaboration), Phys. Rev. D 93,

061101 (2016). [9] P. Agnes et al. (DarkSide Collaboration), Phys. Rev. D 93,

081101 (2016). [10] J. Kopp, V. Niro, T. Schwetz, and J. Zupan, Phys. Rev. D 80,

083502 (2009). [11] E. Aprile et al. (XENON Collaboration), Science 349, 851

(2015). [12] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett.

115, 091302 (2015). [13] K. Abe et al. (XMASS Collaboration), Phys. Lett. B 759,

272 (2016). [14] E. Aprile et al. (XENON100 Collaboration), Astropart.

25 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue