# Interacting partially directed self-avoiding walk: a probabilistic perspective

- Published: 01 Jan 2018
- Publisher: HAL CCSD
- Country: France

- Université Paris Diderot - Paris 7 France
- University of Nantes France
- Université Pierre et Marie Curie France

BAUERSCHMIDT, R., SLADE, G. and WALLACE, B. C. Four-dimensional weakly self-avoiding walk with contact self-attraction. https://arxiv.org/pdf/1610.08573.pdf (math.PR), to appear in J. Stat. Phys.

BEATON, N. R. and ILIEV, G. K. (2015). Two-sided prudent walks: a solvable non-directed model of polymer adsorption. J. Stat. Mech. Theory Exp. 9 P09014, 23. MR3412072 [OpenAIRE]

BEFFARA, V., FRIEDLI, S. and VELENIK, Y. (2010). Scaling Limit of the Prudent Walk. Electronic Communications in Probability 15 44-58.

BINDER, P. M., OWCZAREK, A. L., VEAL, A. R. and YEOMANS, J. M. (1990). Collapse transition in a simple polymer model: exact results. Journal of Physics A: Mathematical and General 23 L975. [OpenAIRE]

BOUSQUET-MÉLOU, M. (2010). Families of prudent self-avoiding walks. Journal of combinatorial theory Series A 117 313 - 344.

BRAK, R., GUTTMAN, A. J. and WHITTINGTON, S. G. (1992). A collapse transition in a directed walk model. J. Phys. A: Math. Gen. 25 2437-2446. [OpenAIRE]

BRAK, R., OWCZAREK, A. L., PRELLBERG, T. and GUTTMANN, A. J. (1993). Finite-length scaling of collapsing directed walks. Phys. Rev. E 48 2386-2396. [OpenAIRE]

CARMONA, P., NGUYEN, G. B. and PÉTRÉLIS, N. (2016). Interacting partially directed self avoiding walk. From phase transition to the geometry of the collapsed phase. Ann. Probab. 44 3234-3290.

CARMONA, P. and PÉTRÉLIS, N. (2016). Interacting partially directed self avoiding walk : scaling limits. 21 no. 49, 1-52 (electronic). Electronic Journal of Probability.

CARMONA, P. and PÉTRÉLIS, N. (2017a). A shape theorem for the scaling limit of the IPDSAW at criticality.

CARMONA, P. and PÉTRÉLIS, N. (2017b). Limit theorems for random walk excursion conditioned to have a typical area. https://arxiv.org/abs/1709.06448.

DENISOV, D., KOLB, M. and WACHTEL, V. (2015). Local asymptotics for the area of random walk excursions. J. Lond. Math. Soc. (2) 91 495-513. MR3355112

DOBRUSHIN, R. and HRYNIV, O. (1996). Fluctuations of shapes of large areas under paths of random walks. Probab. Theory Related Fields 105 423-458. MR1402652 (97h:60029)

DUPLANTIER, B. and SALEUR, H. (1987). Exact tricritical exponents for polymers at the FTHETA point in two dimensions. Phys. Rev. Lett. 59 539-542.

DURRETT, R. (2010). Probability: theory and examples, fourth ed. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge. MR2722836 (2011e:60001) [OpenAIRE]