Asymptotic behavior of splitting schemes involving time-subcycling techniques

Article, Preprint English OPEN
Dujardin , Guillaume; Lafitte , Pauline;
(2015)
  • Publisher: Oxford University Press (OUP)
  • Related identifiers: doi: 10.1093/imanum/drv059
  • Subject: [ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] | Mathematics - Analysis of PDEs

International audience; This paper deals with the numerical integration of well-posed multiscale systems of ODEs or evolutionary PDEs. As these systems appear naturally in engineering problems, time-subcycling techniques are widely used every day to improve computationa... View more
  • References (17)
    17 references, page 1 of 2

    1. D. Aregba-Driollet, M. Briani, and R. Natalini. Asymptotic high-order schemes for 2×2 dissipative hyperbolic systems. SIAM Journal on Numerical Analysis, 46(2):869-894, 2008.

    2. M. O. Bristeau, R. Glowinski, B. Mantel, J. Periaux, and G. S. Singh. On the use of subcycling for solving the compressible Navier-Stokes equations by operator-splitting and finite element methods. Communications in Applied Numerical Methods, 4(3):309-317, 1988.

    3. J. A. Carrillo, T. Goudon, and P. Lafitte. Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes. Journal of Computational Physics, 227(16):7929-7951, 2008.

    4. J. A. Carrillo, T. Goudon, P. Lafitte, and F. Vecil. Numerical schemes of diffusion asymptotics and moment closures for kinetic equations. Journal of Scientific Computing, 36(1):113-149, 2008.

    5. P. Csom´os, I. Farag´o, and A´ . Havasi. Weighted sequential splittings and their analysis. Computers & Mathematics with Applications, 50(7):1017-1031, 2005.

    6. W.J.T. Daniel. A study of the stability of subcycling algorithms in structural dynamics. Computer Methods in Applied Mechanics and Engineering, 156(14):1 - 13, 1998.

    7. W.J.T. Daniel. A partial velocity approach to subcycling structural dynamics. Computer Methods in Applied Mechanics and Engineering, 192:375 - 394, 2003.

    8. J. Diaz and M. J. Grote. Energy conserving explicit local time stepping for second-order wave equations. SIAM Journal on Scientific Computing, 31(3):1985-2014, 2009.

    9. P. Godillon-Lafitte and T. Goudon. A coupled model for radiative transfer: Doppler effects, equilibrium, and nonequilibrium diffusion asymptotics. Multiscale Modeling & Simulation. A SIAM Interdisciplinary Journal, 4(4):1245-1279 (electronic), 2005.

    10. M. J. Grote and T. Mitkova. Explicit local time-stepping methods for Maxwell's equations. Journal of Computational and Applied Mathematics, 234(12):3283-3302, 2010.

  • Related Organizations (2)
  • Metrics
Share - Bookmark